Design and Optimization of Ventilation Systems for Deep Underground Mines

Keywords: Ventilation Systems, Deep Underground Mining, Airflow Dynamics, Geospatial Information Systems (GIS), Energy Efficiency

Abstract

Challenges in ventilation management for deep underground mines grow as mining operations extend deeper because of increased temperatures and humidity. The combination of environmental factors in deep underground mines poses risks to worker safety and health while negatively affecting operational cost efficiency. Efficient ventilation system optimization delivers fresh air effectively, dilutes dangerous gases, and removes excess heat while achieving energy savings. The integration of advanced technologies like Geospatial Information Systems (GIS) enhances this paper's exploration of real-time monitoring and visualization capabilities within ventilation networks. Demand-driven ventilation and energy-optimized fan operations decrease energy costs while meeting environmental standards. These intelligent systems ensure deep mining industries thrive over time through their management of occupational health alongside resource efficiency and environmental considerations. The review reveals essential knowledge regarding ventilation system design and optimization while showcasing best practices and modern advancements that promote safety and sustainability in mining operations.

Author Biography

Parankush Koul, Illinois Institute of Technology

Department of Mechanical and Aerospace Engineering

References

Liu, X., Zhang, X., Wang, L., Qu, F., Shao, A., Zhao, L., Wang, H., Yue, X., Li, Y., Yan, W., & He, J. (2024). Research progress and prospects of intelligent technology in underground mining of hard rock mines. Green and Smart Mining Engineering, 1(1), 12–26. https://doi.org/10.1016/j.gsme.2024.03.007

Hardcastle, S. G., & Kocsis, C. K. (2004). The ventilation challenge. CIM Bulletin, 51–57. https://www.researchgate.net/publication/295574832_The_ventilation_challenge

Shi, H., Sun, H., Jiang, Y., Zhang, S., Zhang, X., & Nie, X. (2024). Ecological characteristics and occupational health effects of deep mines in China: a review. Polish Journal of Environmental Studies, 33(3), 2515–2525. https://doi.org/10.15244/pjoes/175026

Okechukwu, K. C., Okeke, O. C., Nweli, I. H., Anyanwu, E. C., & Nwangwu, M. U. (2024). Ventilation system and groundwater control in underground mining, an overview. World Journal of Innovation and Modern Technology, 8(3), 50–71. https://www.iiardjournals.org/get/WJIMT/VOL.%208%20NO.%203%202024/VENTILATION%20SYSTEM%20AND%2050-71.pdf

Yang, B., Yao, H., & Wang, F. (2022). A review of ventilation and environmental control of underground spaces. Energies, 15(2), 409. https://doi.org/10.3390/en15020409

Roy, S., Mishra, D. P., Bhattacharjee, R. M., & Agrawal, H. (2022). Heat Stress in Underground Mines and its Control Measures: A Systematic Literature Review and Retrospective Analysis. Mining, Metallurgy & Exploration, 39, 357–383. https://doi.org/10.1007/s42461-021-00532-6

Zhang, H., Li, B., Karimi, M., Saydam, S., & Hassan, M. (2023). Recent advancements in IoT implementation for environmental, safety, and production monitoring in underground mines. IEEE Internet of Things Journal, 10(16), 14507–14526. https://doi.org/10.1109/jiot.2023.3267828

Shriwas, M., & Pritchard, C. (2020). Ventilation monitoring and control in mines. Mining, Metallurgy & Exploration, 37, 1015–1021. https://doi.org/10.1007/s42461-020-00231-8

Semin, M. A., Grishin, E. L., Levin, L. Y., & Zaitsev, A. V. (2020). Automated ventilation control in mines. Challenges, state of the art, areas for improvement. CyberLeninka. Retrieved May 11, 2025, from https://cyberleninka.ru/article/n/automated-ventilation-control-in-mines-challenges-state-of-the-art-areas-for-improvement

Journal, I. R. J. E. T. (2020). IRJET- Underground Mine Ventilation -A Case Study. IRJET. https://www.academia.edu/44267201/IRJET_Underground_Mine_Ventilation_A_Case_Study

Ji, P., Lin, H., Li, S., Kong, X., Wang, X., Zhang, J., Zhu, B., & Lin, X. (2024). Technical system and prospects for precise methane extraction in the entire life cycle of coal mining under the goal of “carbon peak and carbon neutrality". Geoenergy Science and Engineering, 238, 212855. https://doi.org/10.1016/j.geoen.2024.212855

Goodfellow, H. D., & Smith, J. W. (1982). Industrial ventilation — a review and update. American Industrial Hygiene Association Journal, 43(3), 175–184. https://doi.org/10.1080/15298668291409578

Nel, A. J. H. (2018). Mine ventilation characterisation through simulations [PhD dissertation, North-West University]. https://repository.nwu.ac.za/bitstream/handle/10394/31460/AJH_Nel.pdf?sequence=1

Xu, G., Luxbacher, K. D., Ragab, S., Xu, J., & Ding, X. (2016). Computational fluid dynamics applied to mining engineering: a review. International Journal of Mining, Reclamation and Environment, 31(4), 251–275. https://doi.org/10.1080/17480930.2016.1138570

Hongqing, Z., Zeyang, S., Meiqun, Y., Zheng, L., & Jian, L. (2011). Theory Study on nonlinear control of ventilation network airflow of Mine. Procedia Engineering, 26, 615–622. https://doi.org/10.1016/j.proeng.2011.11.2214

Semin, M. A., & Levin, L. Y. (2019). Stability of air flows in mine ventilation networks. Process Safety and Environmental Protection, 124, 167–171. https://doi.org/10.1016/j.psep.2019.02.006

Xue, Y., Wang, J., & Xiao, J. (2024). Bibliometric analysis and review of mine ventilation literature published between 2010 and 2023. Heliyon, 10(4), e26133. https://doi.org/10.1016/j.heliyon.2024.e26133

Priyambodo, U., Muhammad, I., Widodo, N. P., Syawaludin, E., Ahmad, I., & Prata, D. A. (2016). A Thermodynamic Study of Ventilation System in Underground Coal Mine. International Symposium on Earth Science and Technology 2016. https://www.researchgate.net/publication/329566882_A_Thermodynamic_Study_of_Ventilation_System_in_Underground_Coal_Mine

Ptaszyński, B., Łuczak, R., Życzkowski, P., & Kuczera, Z. (2018). Thermodynamic processes of the air flowing through a ventilation shaft in underground mines. Archives of Mining Sciences, 63(1), 149–163. https://doi.org/10.24425/118892

Danko, G., Bahrami, D., & Stewart, C. (2020). Applications and verification of a computational energy dynamics model for mine climate simulations. International Journal of Mining Science and Technology, 30(4), 483–493. https://doi.org/10.1016/j.ijmst.2020.03.019

Bascompta, M., Rossell, J. M., Sanmiquel, L., & Anticoi, H. (2020). Temperature prediction model in the main ventilation system of an underground mine. Applied Sciences, 10(20), 7238. https://doi.org/10.3390/app10207238

De Souza, E. (2017). Application of ventilation management programs for improved mine safety. International Journal of Mining Science and Technology, 27(4), 647–650. https://doi.org/10.1016/j.ijmst.2017.05.018

Clarkson, M. A. (2019). A new regulatory scheme for mining, oil and gas site atmospheres and environments [Master of Mining Engineering Thesis, Federation University Australia]. https://www.researchgate.net/publication/336936618_A_new_regulatory_scheme_for_mining_oil_and_gas_site_atmospheres_and_environments

Tuck, M., & Pillay, M. (2012). Harmonization and Standardization of Risk Management of Underground Ventilation in Australia. Academia.edu. https://www.academia.edu/48396304/Harmonization_and_Standardization_of_Risk_Management_of_Underground_Ventilation_in_Australia

Acuña, E. I., & Lowndes, I. S. (2014). A review of primary mine ventilation system optimization. INFORMS Journal on Applied Analytics, 44(2), 163–175. https://doi.org/10.1287/inte.2014.0736

Wallace, K., Prosser, B., & Stinnette, J. D. (2015). The practice of mine ventilation engineering. International Journal of Mining Science and Technology, 25(2), 165–169. https://doi.org/10.1016/j.ijmst.2015.02.001

Heriyadi, B., & Zakri, R. S. (2021). Evaluation and analysis of needs for air ventilation systems in underground coal mine (Case Study in Underground coal Mine, Sawahlunto City). Journal of Physics: Conference Series, 1940, 012077. https://doi.org/10.1088/1742-6596/1940/1/012077

Ranjith, P. G., Zhao, J., Ju, M., De Silva, R. V. S., Rathnaweera, T. D., & Bandara, A. K. M. S. (2017). Opportunities and Challenges in Deep Mining: A Brief review. Engineering, 3(4), 546–551. https://doi.org/10.1016/j.eng.2017.04.024

Onifade, M., Said, K. O., & Shivute, A. P. (2023). Safe mining operations through technological advancement. Process Safety and Environmental Protection, 175, 251–258. https://doi.org/10.1016/j.psep.2023.05.052

Levin, L. Yu., & Semin, M. A. (2017). Conception of automated mine ventilation control system and its implementation on Belarussian potash mines. In Conference: 16th North American Mine Ventilation Symposium. https://www.researchgate.net/publication/324182285_Conception_of_automated_mine_ventilation_control_system_and_its_implementation_on_Belarussian_potash_mines

Di Nardo, M., & Yu, H. (2021). Intelligent ventilation systems in mining engineering: Is ZigBee WSN Technology the best choice? Applied System Innovation, 4(3), 42. https://doi.org/10.3390/asi4030042

Leonida, C. (2019). Fans and Ventilation: Changing the Face of Mine Ventilation. Engineering & Mining Journal (E&MJ), 48–57. https://cft-gmbh.de/cft-files/presse/june_2019_emj_ventilation-final_1.pdf

Saleem, H. A. (2025). Energy consumption reduction in underground mine ventilation System: An integrated approach using mathematical and machine learning models toward sustainable mining. Sustainability, 17(3), 1038. https://doi.org/10.3390/su17031038

Gonen, A. (2021). Energy savings in auxiliary ventilation systems of underground mines. International Journal of Engineering Technologies and Management Research, 8(10), 72–82. https://doi.org/10.29121/ijetmr.v8.i10.2021.1055

De Vilhena Costa, L., & Da Silva, J. M. (2020). Cost-saving electrical energy consumption in underground ventilation by the use of ventilation on demand. Mining Technology, 129(1), 1–8. https://doi.org/10.1080/25726668.2019.1651581

De Cassia Pedrosa Santos, R., Da Silva, J. M., Albergaria, W., Junior, Pinto, C. L., Oliveira, M. M., & Mazzinghy, D. B. (2022). Development of a Low-Cost device for monitoring ventilation parameters (Temperature, humidity and pressure) in underground environments to increase operational safety using IoT. Mining, 2(4), 746–756. https://doi.org/10.3390/mining2040041

Swanepoel, J., Vosloo, J. C., Van Laar, J. H., & Pelser, W. A. (2023). Prioritisation of environmental improvement projects in Deep-Level mine ventilation systems. Mining, Metallurgy & Exploration, 40, 599–616. https://doi.org/10.1007/s42461-023-00738-w

Hancock, S. W. (2019). Improving the operational efficiency of deep-level mine ventilation systems [PhD dissertation, North-West University]. https://repository.nwu.ac.za/handle/10394/35625

Kamyar, A., Aminossadati, S. M., Leonardi, C., & Sasmito, A. (2016). Current developments and challenges of underground mine ventilation and cooling methods. In N. Aziz & B. Kininmonth (Eds.), Proceedings of the 16th Coal Operators’ Conference, Mining Engineering, University of Wollongong (pp. 277–287). https://ro.uow.edu.au/articles/conference_contribution/Current_Developments_and_Challenges_of_Underground_Mine_Ventilation_and_Cooling_Methods/27687888?backTo=%2Fcollections%2FResource_Operators_Conference%2F7651142&file=50423010

Mapeta, T. (2020). A Review Of Ventilation And Cooling Systems Applied In Deep And Ultra-Deep Mines To Improve Safety And Productivity : A Case Study Of South African Gold Mines [Master of Technology in Extraction Metallurgy dissertation, University of Johannesburg]. https://www.proquest.com/openview/ad6c540059033c5d43ee1f5fe8f67afa/1?cbl=2026366&diss=y&pq-origsite=gscholar

Parra, M. T., Villafruela, J. M., Castro, F., & Méndez, C. (2006). Numerical and experimental analysis of different ventilation systems in deep mines. Building and Environment, 41(2), 87–93. https://doi.org/10.1016/j.buildenv.2005.01.002

Sjöström, S., Klintenäs, E., Johansson, P., & Nyqvist, J. (2020). Optimized model-based control of main mine ventilation air flows with minimized energy consumption. International Journal of Mining Science and Technology, 30(4), 533–539. https://doi.org/10.1016/j.ijmst.2020.05.016

Du Plessis, J. J. L., Hoffman, D., Marx, W. M., & Van Der Westhuizen, R. (2013). Optimising Ventilation and Cooling Systems for an Operating Mine using Network Simulation Models. AMMSA, 1–16. https://ammsa.org.za/wp-content/uploads/2022/05/optimising_ventilation_and_cooling_systems-final_4_april_2013.pdf

Nie, X., Wei, X., Li, X., & Lu, C. (2018). Heat treatment and ventilation optimization in a deep mine. Advances in Civil Engineering, 2018, 1529490. https://doi.org/10.1155/2018/1529490

Maleki, S., Sotoudeh, F., & Sereshki, F. (2018). Application of VENTSIM 3D and mathematical programming to optimize underground mine ventilation network: A case study. Journal of Mining and Environment, 9(3), 741–752. https://doi.org/10.22044/jme.2018.6793.1503

Webber-Youngman, R. C. W. (2005). An integrated approach towards the optimization of ventilation, air cooling and pumping requirements for hot mines [PhD dissertation, North-West University, Potchefstroom Campus]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3a08f5a89bfc0f413aec20657626523ef40ea96b

Dello Sbarba, H. (2012). Heat recovery systems in underground mine ventilation systems and novel mine cooling systems [M.Sc. thesis, Université Laval]. https://library-archives.canada.ca/eng/services/services-libraries/theses/Pages/item.aspx?idNumber=1132181608

Swanepoel, J.-J. (2023). Applying multi-criteria decision-making processes to deep-level mine ventilation projects [Doctor of Philosophy in Engineering with Mechanical Engineering dissertation, North-West University]. https://repository.nwu.ac.za/handle/10394/42241

Oosthuizen, C. H. (2020). Evaluating localised ventilation improvements on deep-level mines using simulation models [Master of Engineering in Mechanical Engineering dissertation, North-West University]. https://repository.nwu.ac.za/handle/10394/36248

Vardhan, H. (2014). An introduction to underground mine environment and ventilation. In NPTEL Syllabus. Retrieved May 15, 2025, from https://archive.nptel.ac.in/content/syllabus_pdf/123106002.pdf

Srikanth, M., Supriya, S., & Khader, A. (2023). Monitoring and assessment of underground hazardous gases using electronic sensors and wireless technology. International Journal of Scientific Research in Engineering and Management (IJSREM), 07(03), 1–13. https://doi.org/10.55041/ijsrem17983

Hartman, H. L., Mutmansky, J. M., Ramani, R. V., & Wang, Y. J. (1997). Mine ventilation and air conditioning (3rd ed.). John Wiley & Sons, Inc. https://content.e-bookshelf.de/media/reading/L-753298-b22bafb71d.pdf

Gonen, A. (2018). Ventilation requirements for today’s mechanized underground metal mines. International Journal of Advanced Research in Engineering, 4(1), 7–10. https://doi.org/10.24178/ijare.2018.4.1.07

Acuña, E., & Allen, C. (2017). Ventilation control system implementation and energy consumption reduction at Totten Mine with Level 4 Tagging and future plans. In M. Hudyma & Y. Potvin (Eds.), UMT 2017: Proceedings of the First International Conference on Underground Mining Technology, Australian Centre for Geomechanics. https://doi.org/10.36487/acg_rep/1710_06_acuna

Wang, Q., Cheng, T., Lu, Y., Liu, H., Zhang, R., & Huang, J. (2024). Underground Mine Safety and Health: A Hybrid MEREC–CoCoSo System for the Selection of Best Sensor. Sensors, 24(4), 1285. https://doi.org/10.3390/s24041285

Åstrand, M. (2016). Ventilation performance monitoring in underground mines. Digitala Vetenskapliga Arkivet (DiVA). Retrieved May 17, 2025, from https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A940479&dswid=-423

Zhen, L. (2013). Underground coal mine ventilation Monitoring System research. Applied Mechanics and Materials, 353–356, 3085–3088. https://doi.org/10.4028/www.scientific.net/amm.353-356.3085

Grishin, E. L., Zaitsev, A. V., & Kuzminykh, E. G. (2020). Ensuring Occupational Safety and Health through Ventilation in Underground Mines with Internal Combustion Engine Vehicles on Duty. Perm Journal of Petroleum and Mining Engineering, 20(3), 280–290. https://doi.org/10.15593/2712-8008/2020.3.8

Wan, Y. (2024). Design and optimization of intelligent ventilation system in coal mine. E3S Web of Conferences, 528, 03020. https://doi.org/10.1051/e3sconf/202452803020

Gillies, A. D. S., Wala, A. M., & Wu, H. W. (2004). Case Studies from Application of Numerical Simulation Software to Examining the Effects of Fires on Mine Ventilation Systems. In Proceedings, Tenth US Mine Ventilation Symposium. https://gwmt.com.au/Papers/2004/2004%20-%20May%20-%2010USMVS%20mine%20fires.pdf

Ray, S. K., Sahay, N., Singh, R. P., Singh, A. K., & Bhowmick, B. C. (2002). Reversal of underground mine ventilation. Journal of Mines, Metals & Fuels, 50(9), 339–344. http://cimfr.csircentral.net/id/eprint/217

Hairfield, C. R., & Stinnette, J. D. (2009). Coal mine ventilation efficiency: a comparison of US coal mine ventilation systems. Preprint, 09–071. https://cornettscorner.com/wp-content/uploads/2021/06/COAL-MINE-VENTILATION-EFFICIENCY-A-COMPARISON-OF-US-COAL-MINE-VENTILATION-SYSTEMS.pdf

Rhoton, W. W. (1980). A Procedure to Improve Compliance with Coal Mine Safety Regulations. Journal of Organizational Behavior Management, 2(4), 243–249. https://doi.org/10.1300/j075v02n04_01

Minin, V. V., Tauger, V. M., & Minin, I. V. (2022). Directions of mine ventilation development. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal = Minerals and Mining Engineering, 4, 17–25. https://doi.org/10.21440/0536-1028-2022-4-17-25

Ye, Y. J., Li, Z., & Jiang, J. T. (2014). Safety evaluation of underground uranium mine ventilation system based on analytic hierarchy process and fuzzy comprehensive evaluation. Advanced Materials Research, 1010–1012, 344–352. https://doi.org/10.4028/www.scientific.net/amr.1010-1012.344

Farjow, W., Daoud, M., & Fernando, X. N. (2011). Advanced diagnostic system with ventilation on demand for underground mines. 34th IEEE Sarnoff Symposium, 1–6. https://doi.org/10.1109/sarnof.2011.5876449

Åstrand, M., Saarinen, K., & Sander-Tavallaey, S. (2017). Surrogate models for design and study of underground mine ventilation. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1–8. https://doi.org/10.1109/etfa.2017.8247618

Aminossadati, S. M., & Hooman, K. (2008). Numerical Simulation of Ventilation Air Flow in Underground Mine Workings. University of Queensland eSpace, 253–259. https://core.ac.uk/download/pdf/15053726.pdf

Sethi, A. R. (2015). Underground Mine Ventilation Survey [Bachelor of Technology In Mining Engineering Thesis, National Institute of Technology Rourkela]. http://ethesis.nitrkl.ac.in/7180/

Zhou, K., Lu, X., Yang, C., Chen, Z., Liu, W., & Yan, H. (2025). Architecture and Application of Mine Ventilation System Safety Knowledge Graph Based on Neo4j. Sustainability, 17(7), 3209. https://doi.org/10.3390/su17073209

Jacobs, D. R., Van Laar, J. H., & Schutte, C. S. L. (2022). Strategy to identify and mitigate hazards in deep-level mine ventilation systems using a calibrated digital twin. South African Journal of Industrial Engineering, 33(3), 204–217. https://doi.org/10.7166/33-3-2795

Trapani, K. (2019). Published in Engineering & Mining: Changing the Face of Mine Ventilation. Stantec. Retrieved May 17, 2025, from https://www.stantec.com/en/ideas/market/energy/published-in-engineering-and-mining-journal-changing-the-face-of-mine-ventilation

Maestro Digital Mine. (2017). New ventilation control system to save Glencore – Kidd Mine millions every year. Maestro Digital Mine. Retrieved May 17, 2025, from https://www.maestrodigitalmine.com/news/new-ventilation-control-system-to-save-glencore-kidd-mine-millions-every-year

BioAge Group, LLC. (2022). Glencore orders full fleet of Epiroc battery-electric mining equipment for Onaping Depth nickel and copper mine in Canada. Green Car Congress. Retrieved May 17, 2025, from https://www.greencarcongress.com/2022/07/20220709-epiroc.html

Sithole, C. (2025). Top 10 underground mines in the world. Mining Review Africa. Retrieved May 17, 2025, from https://www.miningreview.com/features-analysis/top-10-underground-mines-in-the-world/

Zadeh, J. (2025). Top 10 Underground Mines in the World: Engineering Wonders Beneath Earth’s Surface. Discovery Alert. Retrieved May 17, 2025, from https://discoveryalert.com.au/news/underground-mines-2025-engineering-marvels/

Glencore Canada. (2023). Deep mining. Glencore Canada. Retrieved May 17, 2025, from https://www.glencore.ca/en/kidd/about-us/deep-mining

Bruce, T. (2014). Ventilation on Demand in Metal mine (AngloGold Ashanti, Obuasi). Montanuniversität Leoben. https://pure.unileoben.ac.at/de/publications/ventilation-on-demand-in-metal-mine-anglogold-ashanti-obuasi

Nyqvist, J., & Serres, M. (2020). ABB discusses the benefits of ventilation on demand. Canadian Mining Journal, 37–40. https://library.e.abb.com/public/1ba9a38bf5424acfb2266acf4da146aa/Canadian%20Mining%20Journal%20May20_VentilationOnDemand.pdf

Minetek Pty Ltd. (n.d.). Underground ventilation technology. Minetek. Retrieved May 17, 2025, from https://minetek.com/en-us/solutions/air/

Johnston, M. (2024). 10 biggest mining companies. Investopedia. https://www.investopedia.com/biggest-mining-companies-5077594

Minetek Pty Ltd. (2024). Minetek Air underground ventilation systems. Minetek. Retrieved May 17, 2025, from https://minetek.com/en-us/resource-hub/news/underground-ventilation-systems/

Ashcroft, S. (2024). Top 10: World’s largest Mines. Mining Digital. Retrieved May 17, 2025, from https://miningdigital.com/top10/top-10-largest-mines-world

Nadaraju, F. J., Maddocks, A. R., Zanganeh, J., & Moghtaderi, B. (2020). Ventilation air methane: a simulation of an optimised process of abatement with power and cooling. Mining Technology, 129(1), 9–21. https://doi.org/10.1080/25726668.2019.1704546

Sridharan, S. J., & Sastry, B. S. (2020). New Prediction Models for Estimation of Aerodynamic Pressure Loss due to a Train of Mine Cars in an Underground Airway. Mining, Metallurgy & Exploration, 37, 1571–1582. https://doi.org/10.1007/s42461-020-00260-3

Tutak, M., Brodny, J., Szurgacz, D., Sobik, L., & Zhironkin, S. (2020). The impact of the ventilation system on the methane release hazard and spontaneous combustion of coal in the area of Exploitation—A case study. Energies, 13(18), 4891. https://doi.org/10.3390/en13184891

Yi, H., Park, J., & Kim, M. S. (2020). Characteristics of mine ventilation air flow using both blowing and exhaust ducts at the mining face. Journal of Mechanical Science and Technology, 34, 1167–1174. https://doi.org/10.1007/s12206-020-0218-0

Jia, J., Li, B., Ke, D., Wu, Y., Zhao, D., & Wang, M. (2020). Optimization of mine ventilation network feature graph. PLoS ONE, 15(11), e0242011. https://doi.org/10.1371/journal.pone.0242011

Wei, J., Xu, X., & Jiang, W. (2020). Influences of ventilation parameters on flow field and dust migration in an underground coal mine heading. Scientific Reports, 10, 8563. https://doi.org/10.1038/s41598-020-65373-7

Cahyono, Y. D. G. (2020). Technical planning of ventilation system to support development W Undercut in 2021 at PT. Freeport Indonesia Underground Mining. Journal of Earth and Marine Technology (JEMT), 1(1), 1–6. https://doi.org/10.31284/j.jemt.2020.v1i1.1141

Pach, G., Różański, Z., Wrona, P., Niewiadomski, A., Zapletal, P., & Zubíček, V. (2020). Reversal ventilation as a method of fire hazard mitigation in the mines. Energies, 13(7), 1755. https://doi.org/10.3390/en13071755

Liu, R., Hu, X., Zhang, C., & Liu, C. (2020). Adaptive Chebyshev Neural Network Control for Ventilator Model under the Complex Mine Environment. Complexity, 2020(1), 9861642. https://doi.org/10.1155/2020/9861642

Zhu, Z., Wang, H., & Zhou, J. (2020). Monitoring and control model for coal mine gas and coal dust. Chemistry and Technology of Fuels and Oils, 56, 504–515. https://doi.org/10.1007/s10553-020-01161-3

Guo, P., Su, Y., Pang, D., Wang, Y., & Guo, Z. (2020). Numerical study on heat transfer between airflow and surrounding rock with two major ventilation models in deep coal mine. Arabian Journal of Geosciences, 13, 756. https://doi.org/10.1007/s12517-020-05725-9

Kuyuk, A. F., Ghoreishi-Madiseh, S. A., & Hassani, F. P. (2020). Closed-loop bulk air conditioning: A renewable energy-based system for deep mines in arctic regions. International Journal of Mining Science and Technology, 30(4), 511–516. https://doi.org/10.1016/j.ijmst.2020.05.011

Zhong, D., Wang, L., Wang, J., & Jia, M. (2020). An efficient mine ventilation solution method based on minimum independent closed loops. Energies, 13(22), 5862. https://doi.org/10.3390/en13225862

Szczurek, A., Maciejewska, M., Przybyła, M., & Szetelnicki, W. (2020). Improving air quality for operators of mobile machines in underground mines. Atmosphere, 11(12), 1372. https://doi.org/10.3390/atmos11121372

Saki, S. A., Brune, J. F., & Khan, M. U. (2020). Optimization of gob ventilation boreholes design in longwall mining. International Journal of Mining Science and Technology, 30(6), 811–817. https://doi.org/10.1016/j.ijmst.2020.08.005

Liu, A., Liu, S., Wang, G., & Elsworth, D. (2020). Continuous compaction and permeability evolution in longwall GOB materials. Rock Mechanics and Rock Engineering, 53, 5489–5510. https://doi.org/10.1007/s00603-020-02222-z

Tu, R., Huang, L., Jin, A., Zhang, M., & Hai, X. (2021). Characteristic studies of heat sources and performance analysis of free-cooling assisted air conditioning and ventilation systems for working faces of mineral mines. Building Simulation, 14, 1725–1736. https://doi.org/10.1007/s12273-021-0772-0

Li, Z., Liu, H., Xu, Y., Li, R., Jia, M., & Zhang, M. (2021). Numerical Analysis on the Thermal Performance in an Excavating Roadway with Auxiliary Ventilation System. International Journal of Environmental Research and Public Health, 18(3), 1184. https://doi.org/10.3390/ijerph18031184

Zgrzebski, P., Soroko, K., Stach, R., & Gola, S. (2021). Ventilation systems to minimize aerological threats at the operational longwall face. CIM Journal, 12(1), 1–8. https://doi.org/10.1080/19236026.2020.1861846

Li, J., Li, H., Zhu, Z., Tao, Y., & Tang, C. (2021). Numerical study on damage zones induced by excavation and ventilation in a High-Temperature Tunnel at depth. Energies, 14(16), 4773. https://doi.org/10.3390/en14164773

Wu, K., Shi, S., Shi, Y., & Chen, Y. (2021). CFD-Based determination of the optimal blowing and suction air volume ratio of Dual-Radial swirl shielding ventilation in a fully mechanized excavation face. Geofluids, 2021(1), 5473256. https://doi.org/10.1155/2021/5473256

Hurtado, J. P., Villegas, B., Pérez, S., & Acuña, E. (2021). Optimization Study of guide vanes for the intake Fan-Duct connection using CFD. Processes, 9(9), 1555. https://doi.org/10.3390/pr9091555

Xin, S., Wang, W., Zhang, N., Zhang, C., Yuan, S., Li, H., & Yang, W. (2021). Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems. Journal of Building Engineering, 38, 102227. https://doi.org/10.1016/j.jobe.2021.102227

Jiang, Z., Wang, Y., & Men, L. (2021). Ventilation control of tunnel drilling dust based on numerical simulation. Journal of Central South University, 28, 1342–1356. https://doi.org/10.1007/s11771-021-4704-z

Iliinov, N. D., Mazhitov, A. M., Allaberdin, A. B., & Vazhdaev, K. V. (2021). Optimization of the ventilation scheme for increasing production capacity of underground mines. Gornaya Promyshlennost = Russian Mining Industry, 2021(6), 89–93. https://doi.org/10.30686/1609-9192-2021-6-89-93

Gao, R., Wang, P., Li, Y., & Liu, R. (2021). Determination of optimal blowing-to-suction flow ratio in mechanized excavation face with wall-mounted swirling ventilation using numerical simulations. International Journal of Coal Science & Technology, 8, 248–264. https://doi.org/10.1007/s40789-020-00384-3

Janus, J. (2021). Air flow modelling on the geometry reflecting the actual shape of the longwall area and goafs. Archives of Mining Sciences, 66(4), 495–509. https://doi.org/10.24425/ams.2021.139593

Si, J., Wang, X., Wang, Y., & Li, L. (2021). Dynamic monitoring technology of air quantity in mine ventilation system based on optimum location of wind speed sensors. IOP Conference Series: Earth and Environmental Science, 692, 042036. https://doi.org/10.1088/1755-1315/692/4/042036

Obracaj, D., Korzec, M., & Deszcz, P. (2021). Study on Methane Distribution in the Face Zone of the Fully Mechanized Roadway with Overlap Auxiliary Ventilation System. Energies, 14(19), 6379. https://doi.org/10.3390/en14196379

Xie, C., Xiong, G., & Chen, Z. (2022). Using CFD to simulate the concentration of polluting and harmful gases in the roadway of Non-Metallic mines reveals its migration law. Sustainability, 14(20), 13349. https://doi.org/10.3390/su142013349

Wu, B., Zhao, R., Meng, G., Xu, S., Qiu, W., & Chen, H. (2022). A numerical study on CO migration after blasting in high-altitude tunnel by inclined shaft. Scientific Reports, 12, 14696. https://doi.org/10.1038/s41598-022-18995-y

Niewiadomski, A. P., Pach, G., Różański, Z., Wrona, P., Musioł, D., Zapletal, P., & Sofranko, M. (2022). Influence of the auxiliary Air-Duct outlet and the Brattice location on the methane Hazard—Numerical simulations. Energies, 15(10), 3672. https://doi.org/10.3390/en15103672

Nguyen, C. K., Nguyen, V. T., & Nguyen, V. Q. (2022). Assessing the current status of underground mine ventilation system in ThanhCong- CaoThang area, HonGai coal company, QuangNinh region, Vietnam. Inżynieria Mineralna, 2(2). https://doi.org/10.29227/im-2019-02-56

Wang, E., Li, X., Huang, Q., & Wang, G. (2022). Research on the influence of natural wind pressure in deep mines on ventilation stability. Advances in Civil Engineering, 2022(1), 8789955. https://doi.org/10.1155/2022/8789955

Jacobs, R., & Van Laar, J. (2022). STRATEGY TO IDENTIFY AND MITIGATE HAZARDS IN DEEP-LEVEL MINE VENTILATION SYSTEMS USING A CALIBRATED DIGITAL TWIN. The South African Journal of Industrial Engineering, 33(3), 204–217. https://doi.org/10.7166/33-3-2795

Wang, J., Jia, M., Bin, L., Wang, L., & Zhong, D. (2022). Regulation and Optimization of Air Quantity in a Mine Ventilation Network with Multiple Fans. Archives of Mining Sciences, 67(1), 179–193. https://doi.org/10.24425/ams.2022.140709

Kohmann, H. K., & Da Silva, A. L. M. A. (2022). Análise do sistema de ventilação de uma carbonífera brasileira. Tecnologia Em Metalurgia Materiais E Mineração, 19, e2594. https://doi.org/10.4322/2176-1523.20222594

Bosikov, I. I., Labazanova, S. H., & Malozyomov, B. V. (2022). Method for determining and refining the interval of data collection of gas-dynamic processes by safety criterion. Journal of Physics: Conference Series, 2176, 012081. https://doi.org/10.1088/1742-6596/2176/1/012081

Kumar, M., Maity, T., & Kirar, M. K. (2022). Energy savings through VOD (Ventilation-on-Demand) analysis in Indian underground coal mine. IEEE Access, 10, 93525–93533. https://doi.org/10.1109/access.2022.3203710

Guo, W., Chen, L., Liu, G., Wang, J., Shi, S., & Bu, L. (2022). Numerical Simulation Study on Ventilation Optimization Design of Extra-Long Double-Line Mountain Tunnels with Parallel Heading: A Case Study. Applied Sciences, 12(23), 12416. https://doi.org/10.3390/app122312416

Xin, S., Han, X., Li, S., Xiao, Y., & Yang, W. (2022). Application of data envelopment analysis in the ventilation and cooling efficiency evaluation of hot development headings. Processes, 10(7), 1375. https://doi.org/10.3390/pr10071375

Saeidi, N., & Allen, C. (2022). A discussion on underground mine ventilation design considerations for diesel vs. battery electric mobile equipment. CIM Journal, 14(1), 48–55. https://doi.org/10.1080/19236026.2022.2096398

Vives, J., Massanés, M. B., De Felipe, J. J., & Sanmiquel, L. (2022). Computational Fluid Dynamics (CFD) study to optimize the auxiliary ventilation system in an underground mine. DYNA, 89(221), 84–91. https://doi.org/10.15446/dyna.v89n221.100297

Janus, J., & Ostrogórski, P. (2022). Underground mine tunnel modelling using laser scan data in relation to manual geometry measurements. Energies, 15(7), 2537. https://doi.org/10.3390/en15072537

Boantă, C., & Tomescu, C. (2022). Computer simulations in the ventilation network of the Vulcan Mine. MATEC Web of Conferences, 354, 00050. https://doi.org/10.1051/matecconf/202235400050

Chikande, T., Phillips, H. R., & Cawood, F. T. (2022). Ventilation optimization through digital transformation. Journal of the Southern African Institute of Mining and Metallurgy, 122(12), 687–696. https://doi.org/10.17159/2411-9717/1950/2022

Nie, W., Cai, X., Peng, H., Ma, Q., Liu, Q., Hua, Y., Guo, L., Cheng, L., Sun, N., & Bao, Q. (2022). Distribution characteristics of an airflow–dust mixture and quantitative analysis of the dust absorption effect during tunnel sub-regional coal cutting. Process Safety and Environmental Protection, 164, 319–334. https://doi.org/10.1016/j.psep.2022.05.068

Słota, K., & Słota, Z. (2022). Analysis of tunnel ventilation during tunnelling - a case study. Civil and Environmental Engineering Reports, 32(4), 259–269. https://doi.org/10.2478/ceer-2022-0056

Gao, K., Qi, Z., Liu, Y., & Zhang, J. (2022). Calculation model for ventilation friction resistance coefficient by surrounding rock roughness distribution characteristics of mine tunnel. Scientific Reports, 12, 3193. https://doi.org/10.1038/s41598-022-07115-5

Liu, Y., Liu, Z., Gao, K., Huang, Y., & Zhu, C. (2022). Efficient graphical algorithm of sensor distribution and air volume reconstruction for a smart mine ventilation network. Sensors, 22(6), 2096. https://doi.org/10.3390/s22062096

Xia, Y., Xiao, X., Zhang, Y., Wang, S., & Lin, L. (2022). Numerical simulation of ventilation performance for large-scale underground cavern group considering effect of ventilation shaft structure. Arabian Journal for Science and Engineering, 47, 4093–4104. https://doi.org/10.1007/s13369-021-05914-y

Chen, Y., Jia, J., & Che, G. (2022). Simulation of Large-Scale Tunnel Belt Fire and Smoke Characteristics under a Water Curtain System Based on CFD. ACS Omega, 7(44), 40419–40431. https://doi.org/10.1021/acsomega.2c05454

Li, J., Li, Y., Zhang, W., Dong, J., & Cui, Y. (2022). Multi-Objective Intelligent Decision and Linkage Control algorithm for mine ventilation. Energies, 15(21), 7980. https://doi.org/10.3390/en15217980

Yu, B.-C., & Shao, L.-S. (2022). A mine ventilation system energy saving technique based on an improved equilibrium optimizer. Frontiers in Energy Research, 10, 913817. https://doi.org/10.3389/fenrg.2022.913817

Nie, W., Cheng, L., Yin, S., Liu, Q., Hua, Y., Guo, L., Cai, X., Ma, Q., & Guo, C. (2022). Effects of press-in airflow rate and the distance between the pressure duct and the side wall on ventilation dust suppression performance in an excavating tunnel. Environmental Science and Pollution Research, 29, 19404–19419. https://doi.org/10.1007/s11356-021-16825-8

Zhang, H., Liu, R., Chun, J., Xue, Q., & Fan, J. (2022). Study on Optimization of the dedusting air duct layout in coal Mine Roadway. Frontiers in Earth Science, 10, 855438. https://doi.org/10.3389/feart.2022.855438

Szlązak, N., & Korzec, M. (2022). The solution of the main fan station for underground mines being decommissioned in terms of reducing energy consumption by ventilation. Energies, 15(13), 4612. https://doi.org/10.3390/en15134612

Hao, H., Jiang, S., Wang, K., Zhang, Y., & Wu, Z. (2022). Multi-branch joint adjustment method of mine ventilation based on sensitivity. International Journal of Ventilation, 22(2), 207–224. https://doi.org/10.1080/14733315.2022.2077523

Hu, D., Li, Z., Wang, H., Xu, H., & Miao, C. (2023). Smoke dispersion test and emergency control plan of fire in mine roadway during downward ventilation. Scientific Reports, 13, 3683. https://doi.org/10.1038/s41598-023-30779-6

Yan, Z., Wang, Y., Fan, J., Huang, Y., & Zhong, Y. (2023). An efficient method for optimizing sensors’ layout for accurate measurement of underground ventilation networks. IEEE Access, 11, 72630–72640. https://doi.org/10.1109/access.2023.3295779

Semin, M., & Levin, L. (2023). Mathematical modeling of air distribution in mines considering different ventilation modes. Mathematics, 11(4), 989. https://doi.org/10.3390/math11040989

Stolbchenko, O. V., Yurchenko, A. A., Luts, I. O., & Saveliev, D. V. (2023). Reducing external air leakage at the main ventilation unit of the mine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 122–128. https://doi.org/10.33271/nvngu/2023-1/122

Adhikari, A., Tukkaraja, P., & Sridharan, S. J. (2023). Estimating the effect of blast and ventilation parameters on blast fume dilution time in underground development blasting using computational fluid dynamics. CIM Journal, 14(1), 21–38. https://doi.org/10.1080/19236026.2022.2158642

Chen, X., Zhang, Y., Ji, J., & Miao, D. (2023). Ventilation and cooling of coal mining face based on CFD model optimization. Process Safety and Environmental Protection, 172, 764–777. https://doi.org/10.1016/j.psep.2023.02.042

Bosikov, I. I., Martyushev, N. V., Klyuev, R. V., Savchenko, I. A., Kukartsev, V. V., Kukartsev, V. A., & Tynchenko, Y. A. (2023). Modeling and complex analysis of the topology parameters of ventilation networks when ensuring fire safety while developing coal and gas deposits. Fire, 6(3), 95. https://doi.org/10.3390/fire6030095

Lian, W.-L., & Qi, J.-J. (2023). Research on Control Optimization Method of mine Ventilation System based on Intelligent Optimization Algorithm. Journal of Computers, 34(1), 239–248. https://doi.org/10.53106/199115992023023401018

Wróblewski, A., Trybała, P., Banasiewicz, A., Zawiślak, M., Walerysiak, N., & Wodecki, J. (2023). Possibilities of 3D laser scanning data utilization for numerical analysis of airflow in mining excavations. IOP Conference Series: Earth and Environmental Science, 1189, 012009. https://doi.org/10.1088/1755-1315/1189/1/012009

Agson-Gani, P. H., Amiri, L., Poncet, S., Hassani, F. P., & Sasmito, A. P. (2023). Investigation of airflow through porous zones: Integrating computational fluid dynamics modeling into mine ventilation network simulation. CIM Journal, 14(1), 39–47. https://doi.org/10.1080/19236026.2022.2161120

Estrada, V. A. P., & Manzano, E. J. H. (2023). Planificación del sistema de ventilación y diseño 3D a largo plazo con el software 3D ventsim, caso Mina Santander – Glencore. Memoria Investigaciones En Ingeniería, 24, 2–12. https://doi.org/10.36561/ing.24.2

Szlązak, N., Swolkień, J., & Kamiński, P. (2023). Design of Coal seam exploitation in Methane Hazard Conditions: A Case study. Energies, 16(1), 365. https://doi.org/10.3390/en16010365

Kashnikov, A. V., & Kruglov, Y. V. (2023). Strategy of mine ventilation control in optimal mode using fuzzy logic controllers. Journal of Mining Institute, 262, 594–605. https://doi.org/10.31897/pmi.2022.75

Shao, W., Wang, S., Wang, W., Shao, K., Xiao, Q., & Cui, Z. (2023). Experiment and simulation on a refrigeration ventilation system for deep metal mines. Sustainability, 15(10), 7818. https://doi.org/10.3390/su15107818

Li, S., Jia, Z., & Ye, Q. (2023). Study on Dynamic Response of Damper under Gas Explosion Impact. Sustainability, 15(4), 3356. https://doi.org/10.3390/su15043356

Ihsan, A., Widodo, N. P., Cheng, J., & Wang, E.-Y. (2024). Ventilation on demand in underground mines using neuro-fuzzy models: Modeling and laboratory-scale experimental validation. Engineering Applications of Artificial Intelligence, 133, 108048. https://doi.org/10.1016/j.engappai.2024.108048

Zhang, J., Zhang, T., & Li, C. (2024). Migration time prediction and assessment of toxic fumes under forced ventilation in underground mines. Underground Space, 18, 273–294. https://doi.org/10.1016/j.undsp.2024.01.004

Ilić, A., & Petrović, D. (2024). Original scientific paper optimization of ventilation using IIOT methodology in Serbian coal mines. Podzemni Radovi, 45, 49–60. https://doi.org/10.5937/podrad2445049i

Bojilov, V., Hadjiev, M., & Shoushoulov, G. (1999). Ventilation network optimization for deep mines. PROCEEDINGS OF THE 8TH US MINE VENTILATION SYMPOSIUM, 619–623. https://web.archive.org/web/20200323044213/https://scholarsmine.mst.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1090&context=usmvs

Thibodeau, D., & Jodouin, J. (2014). Conciliating ventilation requirements and geomechanical requirements for deep mining. Deep Mining 2014: Proceedings of the Seventh International Conference on Deep and High Stress Mining, 783–791. https://doi.org/10.36487/acg_rep/1410_56_thibodeau

Imgrund, T., Bischoff, A., & Spürk, S. (2019). COMPARISON OF MINE VENTILATION SOFTWARE TOOLS FOR UNDERGROUND COAL MINES IN HARSH CONDITIONS. 17th North American Mine Ventilation Symposium 2019 Proceedings, 1–9. https://www.dmt-group.com/fileadmin/redaktion/documents/Publications/Comparison-of-mine-ventilation-software-tools-for-underground-coal-mines-in-harsh-conditions.pdf

Pandey, J. K., Mischo, H., & Drebenstedt, C. (2015). Ventilation on demand for improving viability of underground mines in India. Journal of Mines, Metals & Fuels, 63(5/6), 119. https://openurl.ebsco.com/EPDB%3Agcd%3A12%3A20042764/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A109055534&crl=c&link_origin=scholar.google.com

De Souza, E. (2018). COST SAVING STRATEGIES IN MINE VENTILATION. CIM Journal, 9(2), 2018. http://www.airfinders.ca/wp-content/uploads/2015/05/Cost-Saving-Strategies-in-Mine-Ventilation.pdf

Papar, R., Szady, A., Huffer, W. D., Martin, V., & McKane, A. (1999). Increasing energy efficiency of mine ventilation systems. PROCEEDINGS OF THE 8TH US MINE VENTILATION SYMPOSIUM, 611–617. https://core.ac.uk/download/pdf/229034538.pdf

Stewart, C. M. (2021). Rapid dynamic ventilation modelling for improving health and safety in underground mining [PhD Thesis, School of Mechanical and Mining Engineering, The University of Queensland]. https://doi.org/10.14264/999ea4c

Fair, R., Van Laar, J., Nell, K., Nell, D., & Mathews, E. (2021). SIMULATING THE SENSITIVITY OF UNDERGROUND VENTILATION NETWORKS TO FLUCTUATING AMBIENT CONDITIONS. The South African Journal of Industrial Engineering, 32(3), 42–51. https://doi.org/10.7166/32-3-2616

Cluff, D. L., Kennedy, G. A., & Foster, P. J. (2014). Liquid air for energy storage, auto-compression, compressed air and ventilation in deep mining. Deep Mining 2014: Proceedings of the Seventh International Conference on Deep and High Stress Mining, 757–770. https://doi.org/10.36487/acg_rep/1410_54_cluff
Published
2025-12-30
How to Cite
Koul, P. (2025). Design and Optimization of Ventilation Systems for Deep Underground Mines. Podzemni Radovi, 1(47), 1-44. Retrieved from https://ume.rgf.bg.ac.rs/index.php/ume/article/view/225