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Abstract: Real world mine project value estimation is ill defined, i.e., its 
parameters are not precisely known. Estimating future mineral prices - 
particularly prices far enough into the future to be of use in mine investment 
analysis - is an exercise for which a high error of estimation invariably exists. 
The characteristically long preproduction periods of mining projects mean that 
success of these capital-intensive ventures will be determined by mineral prices 
five to ten years in the future. The market risks related to metal price are 
modelled with a special stochastic process, a Mean reversion process. Validity of 
the parameters of the Mean reversion process directly depends on source of 
information. Parameters of the Mean reversion process are defined as follows: the 

speed of mean reversion k is fixed, the long-run equilibrium metal price P  is 
fixed, volatility σ is defined by lower and upper bound and its variation in this 
interval is uniform and constant over time. To decrease uncertainty we firstly 
make simulation of future states of metal price and after that simulated values are 
converted to interval type-2 fuzzy triangular numbers. 
 
Key words: mining project, uncertainty, metal price, mean reversion process 
simulation, interval type-2 fuzzy sets 
 
 
Apstrakt: Određivanje vrednosti rudarskog projekta, u realnom svetu, je 
„nezdravo“ definisana, tj. parametri procene nisu precizno znani. Procenjivanje 
budućih cena metala-posebno cena u dalekoj budućnosti koje se koriste u 
rudarskim investicionim analizama - predstavlja vežbanje u kojem je 
nepromenljivo zastupljena velika greška procenjivanja. Svojstveno dugi periodi 
pre početka realizacije rudarskih projekata znače da će uspeh ovih skupih 
poduhvata biti određen cenama mineralnih sirovina u budućih pet do deset 
godina. Tržišni rizici vezani za cenu metala modeliraju se posebnim stohastičkim 
procesom, procesom povratka na srednju vrednost. Validnost parametara procesa 
povratka na srednju vrednost direktno zavisi od izvora informacija. Parametri 
procesa povratka na srednju vrednost definisani su na sledeći način: brzina 
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povratka na srednju vrednost k je konstantna, dugoročna srednja cena metala P  
je konstantna, varijabilnost σ definisana je donjom i gornjom granicom, a njeno 
variranje unutar ovog intervala ima uniformnu raspodelu i konstantna je tokom 
vremena. Kako bi smanjili neodređenost, prvo izvodimo simulacije budućih 
stanja cene metala, a nakon toga, simulirane vrednosti konvertujemo u intervalno 
rasplinute trouglaste brojeve drugog tipa. 
 
Ključne reči: rudarski projekat, neodređenost, cena metala, proces povratka na 
srednju vrednost, intervalno rasplinuti skupovi drugog tipa 
 

 
 
1. INTRODUCTION 
 
 A typical mining operation presents risks and challenges in all its aspects, 
including evaluation, finance and construction. Decision pertaining to a firm's proposed 
capital investments can have vital short and long-term consequences on the company's 
ability to compete, and even survive. The evaluation of mining projects in today's 
environment is much complex than it was just a few years ago. There are typically 
myriads of variables which are directly or indirectly associated with the mine project 
evaluation process. As such, underground mine project valuation has become truly 
interdisciplinary in nature. Estimating mineral project revenue is indeed a difficult and 
risky activity. Annual mine revenue is calculated by multiplying the number of units 
produced and sold during the year by the sales price per unit. 
 Fluctuations in commodity prices are of interest because they affect the 
decisions taken by producers and consumers, because they play a crucial role in 
commodity-related investments, project appraisals and strategic planning, and because 
of the extent to which they reflect and influence general economic activity. In general, 
structural models are very useful because they provide valuable insights into the 
determinants of commodity price movements (Bernard et al. 2005). 
 Many authors conclude the existence of mean reversion for commodity prices. 
In examining stochastic models for commodity prices see some of them, for example, 
Schwartz and Smith (2000), Khalaf et al. (2003). Margaret Slade (2001) created a 
model of valuing managerial flexibility in mining investments, where price of natural-
resource commodities is the sum of two stochastic components and both are potentially 
mean reverting. Michael Samis (2001) involved macro-economic uncertainty into 
flexible discrete mine production model through an uncertain mineral price that follows 
the Ornstein-Uhlenbeck process. 
 
 

2. MODEL OF QUANTIFICATION 
 
 Estimating future mineral prices - particularly prices far enough into the future 
to be of use in mine investment analysis - is an exercise for which a high error of 
estimation invariably exists. The characteristically long preproduction periods of 
mining projects mean that success of these capital-intensive ventures will be 
determined by mineral prices five to ten years in the future. 
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 The market risks related to commodity price are modelled with a special 
stochastic process, a Mean reversion process. The Mean reversion process has 
economic logic, for example, although the commodity prices have sensible short-term 
oscillations, they tend to revert back to a "normal" long-term equilibrium level. The 
mean reversion evidence is reported in many studies. The past values of the changes in 
this risk factor help predict the future. We will use a model where the metal spot price 
is assumed to follow the stochastic process (Schwartz, 1997): 

   ln lndP k P P Pdt PdW                   (1) 

 Let x = ln P, applying Ito's Lemma allows the characterization of the log price 
by an Ornstein-Uhlenbeck stochastic mean reverting process: 

   dx k x x dt dW                    (2) 

with 

   
2

ln
2

x P
k


                    (3) 

where are: 

P  - the long-run equilibrium metal price; 

k - measures the speed of mean reversion to the long run mean log price P ; 
dW - an increment to a standard Brownian motion; 
σ - refers to the price volatility rate. 
 The correct discrete-time format for the continuous-time process of mean 
reversion is the stationary first order autoregressive process (Dixit and Pindyck, 1994), 
so the sample path simulation equation for xt is performed by using exact discrete-time 
expression: 

       2
1 1 0,1 1k t k t k t

t tx x e x e N e k     
                  (4) 

where are: 
Δt - the fixed time interval from time t to t+1; 
N(0,1) - the normally distributed random variable. 
 By substituting equation (4) to P = ex, we have exact discrete-time equation for 
Pt, given by: 

         
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      


          
   

         (5) 

 In order to estimate the parameters of the Mean reversion process, we run the 
following regression. 
  1 1t o tdx x                       (6) 

where o kxdt   and 1 kdt   . Hence, if we regress observation dx against x, we can 

obtain estimates of βo and β1. And volatility σ is the standard deviation from the 
regression. By this way, obtained values of parameters are defined as precise values. 
 Let  , 0,...,tP P t T   denote a price scenario with spot prices Pt, where Pt is 

determined by equation (5). Figure 1 presents a sample paths (s = 1, 2, ..., S) of the 
commodity price (for example, zinc price) simulated using the above equation S times. 
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Figure 2 presents Probability density function (pdf) and Cumulative distribution 
function (cdf) of zinc price for t = 1 and s = 1, 2, ..., S, where S is the number of 
simulated price scenarious. 
 

 

Figure 1 - Simulated zinc price paths on a yearly time resolution 
 
 

 

Figure 2 - Probability density function and Cumulative distribution function of zinc price 
for t = 1 

 
 

 Obviously, we obtain the distribution of metal price for every year of project 
time, i.e., pdf1

s, pdf2
s, …, pdfT

s, where s = 1, 2, ..., S. 
 In uncertainty analysis, variables usually are not single-valued but can assume 
a whole range of different values. The set collecting all possible values is denoted by 
  (the sure event). Hence, reliability analysis requires the confidence on the 
occurrence of subsets A   be defined. A confidence measure is number 

 0 1g A  , which represents the confidence one has on the occurrence of A. For 

more details see (Savoia, 2002; Ferrari and Savoia, 1998). Fuzzy numbers can be also 
used to express uncertainties related to input data. A fuzzy number M  is a convex 
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normalized fuzzy set M  of the real line R such that (Bellman and Zadeh, 1977): it 
exists such that one ox R  with   1oM x   (xo is called mean value of M );  M x   

is piecewise continuous. 
 There are many possibilities to use different fuzzy numbers according to the 
situation. Triangular fuzzy numbers (TFN) are very convenient to work with because 
of their computational simplicity and they are useful in promoting representation and 
information processing in fuzzy environment. In this paper, we use TFNs. Triangular 
fuzzy numbers can be defined as a triplet (a, b, c). The parameters a, b and c 
respectively, indicate the smallest possible value, the most promising value and the 
largest possible value that describe a fuzzy event. A fuzzy triangular number M  is 
shown in Figure 3. 
 

 

Figure 3 - Triangular fuzzy number 
 
 

 The membership function is defined as (Kaufmann and Gupta, 1985): 
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 Following way of transformation is used to convert uncertainty expressed by 
probability density function into uncertainty expressed by fuzzy number. Suppose we 
have unimodal continuous probability density function (pdf) p with bounded support 
[a, c], such that p is increasing on [a, b] and decreasing on [b, c] where b is the modal 
value of p. Define a function f:[a, b] → [b, c] by 

        maxf x y p y p x                  (8) 

 Then, the possibility distribution μ can be defined by 
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          
 

x

f x

x f x p y dy p y dy 




                  (9) 

 If we denote the cumulative distribution function by 

       :
x

P x P X x p y dy


                  (10) 

then by (9) 
        1x P x P f x                  (11) 

 The above idea can be illustrated as in Figure 4. For a random variable X with 
probability density function shown as in Figure 4a, for any [ , ]x a b ,  1s P x  and 

  2 1s P f x  , then the possibility function      1 2x f x s s       as 

shown in Figure 4b. As you can see, the support of the membership function and the 
pdf are the same, and the point with higher probability (likelihood) has the higher 
possibility. For more details see (Swishchuk et al. 2008). 
 

a) b)

 

Figure 4 - Transformation from probability (a); to possibility (b) 
 
 

 Further, the uncertainty of input data can then be approximately modelled by a 
fuzzy triangular number. Without loss of generality let us consider one uncertain 
parameter characterized by the set of measured values and values show Gaussian 
distribution, i.e. Normal distribution. The uncertainty in the parameter is modelled by a 
fuzzy triangular number with the membership function which has the support of 

2 2X        set up for around 95% confidence interval of normal distribution 

function. If we take into consideration the triangular fuzzy number is defined as a 
triplet (a, b, c) then a and c is lower bound and upper bound that obtained from lower 
and upper bound of 5% of the normal distribution and the most promising value b is 
equal to mean value of the distribution (Do et al. 2005). Figure 5 shows the illustration 
of transformation. 
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Figure 5 - The transformation from possibility to fuzzy triangular number 
 
 

 According to above way of transformation, metal price for every year of the 
project time is obtained as fuzzy triangular number,  1 1 1 1, , ,P a b c   2 2 2 2, , ,P a b c  

…,  , , .T T T TP a b c  

 Validity of the parameters of the Mean reversion process directly depends on 
source of information. Selection of real source plays a key role in the process of 
estimation of parameters. To make this process easier we propose the following 
approach. 
 In the world of mining business there are many sources of data related to metal 
prices. Without loss of generality we propose regress observation of three sources. Let 
M1, M2 and M3 be a sets of metal prices related to first, second and third source 
respectively. Since regress observation has been done we obtained the following 
parameters:            1 2 3 1 2 31 1 1, , , , ,o M o M o M M M M      . Further, suppose there are 

following relations between obtained parameters:      1 2 3
,o M o M o M     

     1 2 31 1 1 .M M M     

 According to above facts, parameters of the Mean reversion process can be 
expressed as interval numbers. An interval number is an order pair of real numbers, 
 1 2,a a  with 1 2a a . It is also a set of real numbers defined by: 

     1 2 1 2,a a x a x a                  (12) 

 Obviously, the notion of interval numbers provides a tool for representing a 
real number by specifying its lower (L) and upper (U) endpoints (Yao, 1993). We can 
perform arithmetic with interval numbers through the arithmetic operations on their 
numbers. We can derive following formulas: 
       1 2 1 2 1 1 2 2, , ,a a b b a b a b                 (13) 

       1 2 1 2 1 2 2 1, , ,a a b b a b a b                 (14) 

        1 2 1 2 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2, , min , , , ,max , , ,a a b b a b a b a b a b a b a b a b a b        (15) 
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           1 2 1 2 1 2 2 1 1 2, / , , 1 ,1 for 0 ,a a b b a a b b b b              (16) 

 Parameters of the Mean reversion process can be defined as following interval 
numbers: 
     1 1 1, ; ,o oL oU L U                     (17) 

where:       
1 2 3

min , ,oL o M o M o M    ,       
1 2 3

max , ,oU o M o M o M    , 

       
1 2 31 1 1 1min , ,L M M M     and       

1 2 31 1 1 1max , ,U M M M     

 However, we are often faced with incompletely knowledge about set of 
historical data and because of it, determination of parameters as precise values can be 
very hard task. Avellaneda et al. (1995) developed a model for pricing and hedging 
derivative securities and option portfolios in an environment where the volatility is not 
known precisely, but is assume instead to lie between two extreme values σmin and σmax 
[15]. To predict the future states of Pt we applied the same approach with following 
assumptions: the speed of mean reversion k is fixed,  1 1 2L Uk     ; the long-run 

equilibrium metal price P  is fixed,   2oL oUP k   ; volatility  ,L U   , 

where σL and σU represent lower and upper bounds on the volatility, i.e., min and max 
value of volatility; σL and σU are constant over time; volatility vary anywhere in this 
interval and variation is uniform. According to above assumptions we consider the use 
of Mean reversion process (MRP) with a fixed speed of mean reversion k and long-run 
equilibrium metal price P , but uncertain volatility σ in the following form: 

         
 

2
2

1exp ln ln 1 0,1 1 2
2
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

     (18) 

 

 

Figure 6 - Cumulative distribution functions of the metal price for Pt,L and Pt,U; 
Possibility functions of the metal price for Pt,L and Pt,U 
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 On the base of pdf of  , , ,t L LP MRP k P   and pdf of  , , ,t U UP MRP k P   

obtained by simulation, it is created two cumulative distribution functions. According 
to way of transformation (from probability to possibility), we obtain two possibility 
functions, one for  , , ,t L LP MRP k P   and one for  , , ,t U UP MRP k P   (Figure 6). 

 The uncertainity of the metal price, at point t, is further modeled by a type-2 
fuzzy set where possibility function for Pt,L corresponds to lower membership function 
and possibility function for Pt,U to upper membership function, respectively. 
 The concept of type-2 fuzzy set was introduced by Zadeh (1975) as an 
extension of the concept of an ordinary fuzzy set (called a type-1 fuzzy set). For more 
details see (Liu, 2008; Karnik and Mendel, 2001; Dinagar and Anbalagan, 2011; Nasab 
and Malkhalifeh, 2010). 

 A type-2 fuzzy set, denoted A


, is characterized by a type-2 membership 

function  ,
A

x u  , i.e.,       , , , , 0,1x
A

A x u x u x X u J 


      , in which 

 0 , 1
A

x u   , Jx is the primary membership, which is domain of the secondary 

membership function. The amplitude of a secondary membership function is called the 
secondary grade. When the secondary membership functions are type-1 interval sets, 
we call the type-2 set an interval type-2 set. 
 

 

Figure 7 - A triangular interval type-2 fuzzy set 
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
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where 1 2 3 1 2 3 1 1; ;U U U L L L U La a a a a a a a      and 3 4
L Ua a , i.e., L UA A  .  UH A  

and  LH A , denote the heights of UA  and LA , respectively,    0,1UH A   and 

   0,1LH A  . Figure 7 represents the upper triangular membership function UA  and 

the lower triangular membership function LA  of the interval type-2 fuzzy set A


. 
 The uncertainty of the metal price, at point (year) t, is now expressed as the 

triangular interval type-2 fuzzy number,  1 1 1, ,U LP P P


     2 2 2, ,U LP P P


   ..., 

 ,U L
T T TP P P


   , (Figure 8). 

 

 

Figure 8 - A triangular interval type-2 fuzzy number of metal price 
 
 

 An important concept related to the application of interval type-2 fuzzy 
numbers is defuzzification, which converts a interval type-2 fuzzy number into a crisp 
value. Such transformation is not unique because different methods are possible. In this 
paper we applied the following transformation. 
 Karnik and Mendel have developed two iterative algorithms (known as the 
KM Algorithms) for defuzzification of the interval type-2 fuzzy sets (Karnik and 
Mendel, 2001). These algorithms are monotonically and super-exponentially 
convergent (Mendel and Liu, 2007). 
 The KM Algorithms can be explained as follows. 

The cr (right) determination 

 1) Assume that the pre-computed i
rc  are arranged in ascending order, i.e., 

1 2 ... M
r r rc c c   , where M denotes number of vertical slices. 

 2) Make initialization of i
r , through following equation: 
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     1
, 1,2,...,

2
i i i
r r rc c i M                    (19) 

 3) Compute cr as: 

   1 2 1

1

, ,...,

M
i i
r r

M i
r r r r M

i
r

i

c

c c


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






 




              (20) 

and let r rc c  . 

 4) Find  1 1R R M    such that 1R R
r r rc c c   . 

5) Compute cr as: 
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

 

 
             (21) 

and let .r rc c   

 6) Check, if r rc c   than stop and set .r rc c   If not, set r rc c   and return 

to Step 4. 

The cl (left) determination 

 1) Replace i
rc  by i

lc . 

 2) Make initialization of i
l  through equation (19). 

 3) Compute cl through equation (20). 

 4) Find  1 1L L M    such that 1L L
l l lc c c   . 

 5) Compute cl as: 
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             (22) 

and let .l lc c   

 6) Check, if l lc c   than stop and set l lc c  . If not, set l lc c   and return 

to Step 4. 
 The defuzzified output of an interval type-2 fuzzy set is simply the average of 
cl and cr, i.e., 

   1

2 l rc c c   
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 The defuzzified output of an interval type-2 fuzzy number of metal price is 
simply the average of  ,l tP  and  ,r tP , t = 1, 2, ..., T i.e., 

      , ,
1

1, 2, ...,
2t l t r tP P P t T   . 

 Algorithm of quantification of uncertainty of metal price is represented in 
Figure 9. 
 

 

Figure 9 - Flow chart of quantification of uncertainty related to metal price 
 
 

3. CONCLUSION 
 
 The stochastic behavior of metal price has important implications for the 
valuation of natural resource project related to the prices of those commodities. The 
Mean reversion process approach to forecast future prices of metal is going support 
both in the scholar community and in the practice. Validity of the parameters of the 
Mean reversion process directly depends on source of information. Selection of real 
source plays a key role in the process of estimation of parameters. To avoid this 
problem we propose the regression analysis for every source of historical data of metal 
price. Since regress observation has been done we obtained the parameters of MRP as 
interval numbers. The speed of mean reversion and the long-run equilibrium metal 
price are fixed and they are defined according to interval arithmetic while volatility 
stays as interval with uniform variation within it. On the base of results of MRP 
simulation we obtain two probability and two cumulative distribution functions (upper 
and lower) for every year of the project time. According to way of transformation 
(from probability to possibility) and definition of fuzzy triangular number we create 
interval type-2 fuzzy triangular numbers representing the prices of metal for every year 
of the project time. Interval type-2 fuzzy triangular numbers are defuzzified and 
converted into a crisp values by using Karnik and Mendel two iterative algorithms. 
Forecasting future values of metal prices is crucial component in the evaluation of 
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mining project. Model developed in this paper quantifies uncertainty of the metal 
market and helps decision makers to involve it into process of the mining project 
evaluation. This approach is not limited only for this purpose, it can be used to 
forecast, for example, the future values of costs of production because many authors 
use MRP to describe fluctuations of oil and electricity prices.  
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