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Abstract: There are typically many of variables, which are directly or indirectly 
associated with the value of underground mine project. Having the ability to plan 
for uncertainties of input variables is increasingly recognized as critical to long-
term mining project success. Large capital intensive projects, such as those in the 
mineral resource industry, are often associated with diverse sources of both 
internal and external uncertainties. One of the most external influencing 
uncertainties is related to the future states of metal price. There are many methods 
which are applied to forecast the future metal prices, but Mean Reversion Process 
is one of the most applying methods. This paper analyzes the possibility of using 
of Grey System Theory to metal price forecasting by examining the correlation 
between results obtained by these two methods. Intra-class Correlation 
Coefficient is used as a measure of reliability. 
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Apstrakt: Postoji veliki broj promenljivih, koje su direktno ili indirektno 
povezane sa vrednošću projekta podzemne eksploatacije. Sposobnost planiranja 
neodređenosti ulaznih promenljivih sve više se prepoznaje kao kritična za 
dugoročni uspeh projekta. Kapitalni projekti, kao što su rudarski, često su 
skopčani sa različitim izvorima i unutrašnjih i spoljašnjih neodređenosti. Jedna od 
najuticajnijih spoljašnjih neodređenosti povezuje se sa budućim cenama metala. 
Postoji veliki broj metoda koje se koriste sa procenu budućih cena metala, ali 
Proces povratka na srednju vrednost je metoda koja se najviše primenjuje. U 
ovom radu se analizira mogućnost primene Teorije sivog sistema za prognozu 
cene metala, istražujući korelaciju između rezultata koji su dobijeni primenom 
ove dve metode. Intra-klasni koeficijent korelacije koristi se kao mera 
pouzdanosti. 
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1. INTRODUCTION 
 
 Uncertainty in a mining project is commonly evaluated with respect to 
endogenous (internal) and exogenous (external) conditions. Internal conditions are 
those governed by the deposit and mining method itself, such as grade, ground 
conditions, workforce, management, schedule, equipment and infrastructure. External 
conditions are determined by outside considerations, such as market prices, 
environmental conditions, political risk, government policies, stakeholder issues, as 
well as community and industrial relations (Kazakidis and Scoble, 2003). The 
combined effect of market volatility and uncertainty about future commodity prices is 
posing higher risk to mining businesses across the globe. Estimating mineral project 
revenue is, indeed, a difficult and risky activity. Annual mine revenue is calculated by 
multiplying the number of units produced and sold during the year by the sales price 
per unit. 
 The market risks related to the commodity price are modelled with a special 
stochastic process, a mean reversion process. The mean reversion process has 
economic logic, for example, although the commodity prices have sensible short-term 
oscillations, they tend to revert back to a "normal" long-term equilibrium level. 
 Metal prices can be treated as a time series. A time series is a collection of 
data points which are generally sampled equally in time intervals. Time series 
prediction refers to the process by which the future values of a system is forecasted 
based on the information obtained from the past and current data points. In this paper 
we apply Grey system theory to forecast future values of metal price and obtained 
results we compare to values obtained by Mean reversion process. Intra-class 
Correlation Coefficient is used as a measure of reliability. 
 
 

2. METHODOLOGY OF TESTING 
 

2.1. Mean reversion process (MRP) 
 
 Estimating future metal prices is an exercise for which a high error of 
estimation invariably exists. The characteristically long preproduction periods of 
mining projects mean that their success will be determined by metal prices five to ten 
years in the future. 
 The market risks related to commodity price are modelled with a special 
stochastic process, a mean reversion process. The mean reversion process has 
economic logic, for example, although the commodity prices have sensible short-term 
oscillations, they tend to revert back to a "normal" long-term equilibrium level. The 
mean reversion evidence is reported in many studies. The past values of the changes in 
this risk factor help predict the future. We will use a model where the metal spot price 
is assumed to follow the stochastic process (Schwartz, 1997): 
   ln lndP k P P Pdt PdW                   (1) 

 Let lnx P , applying Ito's Lemma allows the characterization of the log price 
by an Ornstein-Uhlenbeck stochastic mean reverting process: 
   dx k x x dt dW                    (2) 
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where P  is the long-run equilibrium metal price, k measures the speed of mean 
reversion to the long run mean log price P , dW is an increment to a standard Brownian 
motion and  refers to the price volatility rate. The metal price adjustment mechanism 
is accounted for by market forces. Suppose we observe that metal price jumps from P1 
to P2 due to an unexpected event. Most market practitioners would agree that is highly 
probable that price will eventually return to its average level once the cause of the jump 
goes away. For similar reasons if the price falls from P1 to P2 due to overproduction we 
would expect the price to eventually rise as producers decrease supply. These 
expectations are intuitive in nature and are supported by our observations of metal 
current price behavior. Notice from equation (1) that the mean reversion component 
term is governed by the distance between the current price and the long-run 
equilibrium metal price as well as by the speed of mean reversion. If the current price 
is below the long-run equilibrium, the mean reversion component will be positive, 
resulting in an upward influence on the current price. Alternatively, if the current price 
is above the long-run equilibrium, the mean reversion component will be negative, thus 
exerting a downward influence on the current price. Over time, this results in a price 
path that drifts towards the long-run equilibrium, at a rate determined by the speed of 
mean reversion. 
 The correct discrete-time format for the continuous-time process of mean 
reversion is the stationary first order autoregressive process (Dixit and Pindyck, 1994), 
so the sample path simulation equation for xt is performed by using exact discrete-time 
expression: 
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where Δt is the fixed time interval from time t to t+1 and N (0,1) is the normally 
distributed random variable. By substituting equation (4) to xP e , we have exact 
discrete-time equation for Pt, given by: 
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      (5) 

 In order to estimate the parameters of the mean reversion process, we run the 
following regression. 
  1 1t o tdx x                       (6) 

where: 

o kxdt   and 1 kdt   . Hence, if we regress observation dx against x, we can obtain 

estimates of o and 1. 
 - the standard deviation from the regression. 

 The speed of mean reversion k is the negative of the slope, while the long-run 
equilibrium P  is the intercept estimate of that regression divided by the speed of mean 
reversion. Let  , 0,...,tP P t T   denote a price scenario with spot prices Pt, where Pt 
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is determined by equation (5). Figure 1 presents a sample paths of the metal price 
simulated using the above equation. 
 

 

Figure 1 - Simulated metal prices (Blanco and Soronow, 2001) 
 
 

2.2. Grey system theory (GST) 
 
 A time series is a collection of data points which are generally sampled 
equally in time intervals. Time series prediction refers to the process by which the 
future values of a system is forecasted based on the information obtained from the past 
and current data points. Generally, a pre-defined mathematical model is used to make 
accurate predictions (Kayacan et al. 2010). Grey system theory is an interdisciplinary 
scientific area that was first introduced by Deng (1982). The main task of grey system 
theory is to extract realistic governing laws of the system using available data. This 
process is known as the generation of the grey sequence (Liu and Lin, 1998). 
 In grey systems theory, GM (n,m) denotes a grey model, where n is the order 
of the difference equation and m is the number of variables. GM (1,1) model is the 
most widely used, pronounced as "Grey Model First Order One Variable". The 
GM (1,1) model can only be used in positive data sequences (Deng, 1989). 
 Let consider a time sequence P(o) that denotes historical data of an metal price 
in USD/t (Figure 2), 

                1 , 2 ,..., , 4o o o oP p p p n n                (7) 

where P(o) is a non-negative sequence and n is the sample size of the data. 
 The following procedures address the process of using GM (1,1) to make a 
one-step ahead prediction (Yang et al. 2012). 
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Figure 2 - The original data set 
 
 

 Step 1: Perform accumulated generating operation (AGO). The AGO is 
performed to the original time series or primitive sequence to weaken the tendency of 

data variation. Let    1p k  be the new time series generated by AGO, as listed in the 

following equation. 

                1 1 1 11 , 2 ,...,P p p p n                (8) 

where 

         1

1

, 1,2,...,
k

o

i

P k p i k n


                 (9) 

 Note that the new series p(1) obtained from one-time AGO (1-AGO) has the 
property of monotonic increasing. Obviously, this monotonic property makes p(1) easier 
to be predicted than that in the original series p(o). 

 Step 2: Modeling with a differential equation. As the solution of first-order 
ordinary differential equations (ODE) has the same monotonic increasing property as 
the series derived from AGO, the model of p(1) can be approximate by a differential 
equation as follows: 

  
 

 
1

1dp
ap b

dt
                  (10) 

where a and b are model parameters need to be determined, called developing 
coefficient and grey input, respectively. 

 Step 3: Determine model parameters. The model parameters a and b can be 

estimated by introducing a new variable    1z k , called background value, in the 

following approximation model. 

         1 , 2op k az k b k                 (11) 

where    1z k  is defined as: 
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 In conventional grey models, the parameter  is set to 0.5 and can be 
expressed as: 

             1 1 10.5 0.5 1z k p k p k                (13) 

 Now, a and b can be estimated using the least-square technique described as 
follows. At first, we rearrange equation (12) in the form of simultaneous equations: 
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 Then, the matrix form of the equation (14) is described as: 
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and 
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 By applying the Moore-Penrose pseudo-inverse, parameters a and b can be 
determined as follows: 

    1T Ta
B B B Y

b

 
    

 
               (18) 

 Step 4: Estimate data points in p(1) space. As the initial condition of equation 

(10) is        1 1 1op p , once the model parameters are determined, the solution of the 

equation (10) can be obtained as follows: 
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           1 1ˆ 1o a kb b
p k p e
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where    1p̂ k  is defined as the estimated value of    1p k . By substituting k with n+a 

into equation (19), the one-step ahead prediction in  1p  space can be obtained as 

follows: 

         1ˆ 1 1o a nb b
p n p e

a a
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 
             (20) 

 Step 5: Transform estimated AGO series back to  op  space. This step is to 

transform the predicted value in  1p  back to  op  space by performing the operation of 

inverse AGO (IAGO) using following equation: 

             1 1ˆ ˆ ˆ1 1op k p k p k                  (21) 
 
 

2.3 Intra-class correlation coefficient 
 
 Intra-class correlation coefficients (ICC) are commonly used in different 
research fields as a measure of reliability. There are three basic classes of intra-class 
correlation coefficients, which they term Case 1, Case 2 and Case 3. In each case n 
randomly chosen targets are rated by k raters, with distinction that for Case 1 each 
target is rated by different raters, for Case 2 the same raters rate each target and for 
Case 3 all possible raters rate each target (Doros and Lew, 2010). 
 Intra-class correlation is the strength of a linear relationship between subjects 
belonging to the same class or the same subgroup or the same family. In the agreement 
setup, the two measurements obtain on the same subject by two observers or two 
methods is a subgroup. If they agree, the intra-class correlation will be high. This 
method of assessing an agreement was advocated by Lee et al. (1989). 
 Statistically, intra-class correlation is that part of the total variance that is 
accounted for by the difference in the paired measurements obtained by two methods 
(Indrayan, 2013). That is: 

  
2

2 2
M

M e

r


 



                (22) 

whereby: 
2
M  - the variance between methods, and 
2
e  - the error variance. 

 For grading of the strength of agreement, the cutoffs shown in Table 1 can be 
used. 
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              Table 1 - The strength of agreement 
Intra-class correlation Strength of agreement 

< 0.25 Poor 
0.25 - 0.50 Fair 
0.50 - 0.75 Moderate 
0.75 - 0,90 Good 

> 0.90 Excellent 
 
 

2.4 Testing the correlation between MRP and GST 
 
 Once the simulations S

tP , 1,2,...,s S ; 1,2,...,t T  (5), have been obtained, 

they can be used to estimate the distribution of the future metal price for every year of 
project time. By this way, we obtain the forecasted time series of metal price as 
follows: 
   1 2, ,..., , 1,2,...,t tP p p p t T               (23) 

where  S
t tp E P  is expected value of metal price for every year of project time. 

 According to equation (21) we obtain the forecasted time series of metal price 
as follows: 

          1 2, ,..., , 1,2,...,o o o o
t tP p p p t T               (24) 

 Consider a data set consisting of T paired data values   , ,, o
t MRP t GSTp p , for 

1,2,...,t T . The intraclass correlation coefficient is as follows: 
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3. NUMERICAL EXAMPLE 
 
 Numerical example shows the examination related to the price of zinc metal. 
The input parameters required for the testing the correlation between MRP and GST 
are given in the Table 2. Note, the situation is hypothetical and the numbers used are in 
to permit calculation. 
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                 Table 2 - Input parameters 
Year 2009 2010 2011 2012 2013 

Metal price [$/t] 1658 2160 2195 1950 1910 
Parameters of MRP      

The long-run equilibrium ( P ) 2046     

The price volatility rate  0.08377     
The speed of mean reversion k 1.14654     
The fixed time interval t 1 year     
Number of simulation S 500     
Time horizon T 8 years     

Spot value  0P t   [$/t] 2000     

Parameters of GST      
a 0.048106     
b 2337.41     
Time horizon T 8 years     

 
 

 Mean reversion price scenario is defined as follows: 

 

     

 
 

2
1.14654 1.14654

1

2 1.14654

0.08377
exp ln ln 1

2 1.14654

1
0,1 0.08377

2 1.14654

t tP P e P e

e
N

 


 

          
   

 

           (28) 

 Grey system theory scenario is defined as follows: 

     1 0.0481062337.41 2337.41
ˆ 1 1658

0.048106 0.048106
tp t e     

 
           (29) 

 
 Forecasted values of the zinc metal price for the period 2014-2021 is 
represented in the Table 3 and Figure 3. 
 

           Table 3 - Forecasted values of the 
         zinc metal price 2014-2021 

Year MRP GST 
2014 2150 1818 
2015 2081 1733 
2016 2058 1652 
2017 2049 1574 
2018 2052 1500 
2019 2048 1430 
2020 2043 1362 
2021 2042 1298 
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Figure 3 - Forecasted values of zinc metal price 2014-2021 
 
 

 Calculation of the intra-class correlation coefficient is represented in the Table 
4. 
 

           Table 4 - Calculation of ICC 
Year MRP GST  
2014 2150 1818  
2015 2081 1733  
2016 2058 1652  
2017 2049 1574  
2018 2052 1500  
2019 2048 1430  
2020 2043 1362  
2021 2042 1298  

T 8 8 2 16T   

p  16523 12367 28890p   

p  2065.37 1545.87 2 1805.62p T   

2p  34135447 19349741 2 53485188p   

 2
p T  34126191 19117836  2

53244027p T    

2
M  49901203 2

e  241160 
2

2 2
M

M e

r


 



 0.99519 

 
 

 According to the Table 1, correlation between MRP and GST is excellent. 
 
 

4. CONCLUSION 
 
 Estimating future metal prices is an exercise for which a high error of 
estimation invariably exists. The characteristically long preproduction periods of 
mining projects mean that their success will be determined by metal prices five to ten 
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years in the future. Having the ability to plan for uncertainties of metal prices is 
increasingly recognized as critical to long-term mining project success. For this 
purpose Grey system theory is used as method to forecast the future values of the zinc 
metal price. Intra-class coefficient of correlation between MRP and GST, as a measure 
of reliability, shows that GST method can be used as forecasting method. Values 
obtained by GST have more restrictive influence on the project evaluation process than 
values obtained by MRP, that is GST is much more rigid. 
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