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Abstract: The Danish astronomer Peter Andreas Hansen, who also worked on
theoretical geodesy, provided an original solution for solving the geodetic
quadrilateral in which the four angles and the length of one side are known. This
procedure, identified in scientific literature as Hansen’s problem, has been
applied in geodesy but significantly more so when solving various problems
related to mining measurements in underground exploitation. Nonetheless, the
literature does not cover the determining of the standard deviation of the
coordinates of unknown points which are established using Hansen’s method. In
this paper then, equations are derived to calculate the standard deviation of the
coordinates determined by the above mentioned procedure.
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Apstrakt: Danski astronom Peter Andreas Hansen, koji se bavio i teorijskom
geodezijom dao je originalno reSenje za reSavanje geodetskog cetvorougla u
kome su poznata Cetiri ugla i duzina jedne strane. Ovaj postupak koji se u
strucnoj literaturi naziva "Hanzenov problem" naSao je primenu u Geodeziji, ali
znatno vise u reSavanju razliitih zadataka iz oblasti Rudarskih merenja koji se
javljaju pri podzemnoj eksploataciji. Medutim, ono $to u literaturi nije obradeno
predstavlja odredivanje standardnih odstupanja koordinata nepoznatih tacaka do
kojih se dolazi primenom Hanzenovog postupka. U ovom radu izvedene su
jednacine za racunanje standardnih odstupanja koordinata odredenih navedenim
postupkom.
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1. INTRODUCTION

Peter Andreas Hansen (1795- 1874) was a Danish astronomer whose most
famous work is in the field of celestial mechanics: theories on the motion of comets,
small planets, the Moon, as well as lunar tables (Ephemerides). In addition to
astronomy, Hansen worked on optics, probability theory and theoretical geodesy. In the
field of Geodesy, he is well-known for his method of solving the geodetic quadrilateral
in which four angles and the length of one side are known. Based on these elements,
the unknown angles ¢ and y (Figure 1) are calculated, followed by all the other
elements of the quadrilateral.

Such a way of solving the geodetic quadrilateral, known as Hansen's problem
can be applied in:

- Determining the elements of eccentricity (Mihailovi¢, 1987);

- Determining the base for terrestrial photogrammetric surveying (Schofield and
Breach, 2007);

- Determining the points for vertical shaft surveys (Patari¢, 1990);

- Connecting pits to the base on the surface of the terrain (Baturi¢, 1959), etc.

On the whole, Hansen's problem is applied in the instances where two points
of the quadrilateral are inaccessible or are, for reasons of safety, inconvenient for
stations at which it is necessary to focus the surveying instrument. The four angles
required in the quadrilateral are measured only from the remaining two points of the
quadrilateral.

When it is necessary to evaluate the coordinates of the points in the geodetic
quadrilateral, then it is, as in every free trigonometrical network, essential to know the
coordinates of the two points. In that case, the length of the side between these two
points is calculated on the basis of the coordinates of the given points, while only
angles are measured on the terrain. It follows that two situations are then feasible:

- The angles are measured from the given points, and
- The angles are measured from unknown points.

The first situation, where the angles are measured from the given points is
more straightforward and does not involve calculating the elements of the geodetic
quadrilateral. Based on the directional angle of the side between the given points and
the measured angles, oriented directions are calculated in terms of unknown points or
their coordinates (Chandra, 2005).

The second situation, when the angles are measured from unknown points, is
more complex and requires that the geodetic quadrilateral be previously solved in
accordance with Hansen's method.

The five known elements (four angles and one side) represent the
mathematical minimum hence providing a unique solution. All additional
measurements of an element of the geodetic quadrilateral (redundant measurements)
offer an ambiguous solution necessitating the leveling of all measured values. In this
case the calculations for the coordinates of unknown angles will be carried out by
applying the methods of indirect leveling, thus obtaining the standard deviation of the
coordinates of the unknown points.
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2. CALCULATING ELEMENTS OF THE GEODETIC QUADRILATERAL
USING HANSEN’S METHOD

The geodetic quadrilateral problem which consists of two given but
inaccessible points and two unknown but accessible points can be solved using
Hansen's method (www2.washjeff).

Points 4 and B are given points with known coordinates Y, and X, or Yz and
X3, but they are inaccessible and angles cannot be measured from them. The horizontal
length d between them is also known and is calculated on the basis of the coordinates
of these points.

In order to solve the quadrilateral or to determine the coordinates of the
unknown but accessible points / and 2 it is sufficient to measure, on the terrain, the
horizontal angles from these points: «;, @, £, F-

Figure 1 - Elements of the geodetic quadrilateral which is solved using Hansen's method

On account of measured and known (given) quantities, all unknown quantities
in the quadrilateral are calculated: angles y, J, ¢, w and lengths d,, d>, ds, d, and ds.

The unknown angles y and J are derived from triangles:
from AA12: y=180"-a, - B, - 5, (1)
from AB12: 0=180"-a, - B, -, 2)

The unknown angles ¢ and y are calculated on the basis of their semi-sums
and semi-differences, or:

(p+l// -y
SRk AN Ak & 3
9= 5 (3)
@-l—l// Q=Y
e —— 4
V=" 5 4)

Given that ¢+ =g+, (from AABI and AA12), the semi-sum of the
unknown angles is:
+ +
¢ l// — ﬁl ﬁZ (5)
2 2
In accordance with the Sine rule:
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d _sing, d, _sinff, d; sind d, sing ©)
d, sing’  d, siny  d, sinf  d sina,

After multiplying:
d d, ds ﬁ_l_sinal-sinﬁz~sin5-sin¢) Rl
d d, d, d siny -siny -sin f, -sina,

Or:
tan 1 — s.1n(p _ s?n}/-s1r.1ﬂ1 ~sn?a2 )

siny sing, -sinf, -sind

As:

tan Y tan p—1
f - A4 :tan(,u—45°) )

tan 2TV 1+tan i

The semi-difference of the unknown angles is:
-y _ pry .
T—arctan[tanT~tan(y—45 )} (10)

The unknown sides of the quadrilateral d; and d,, as well as its diagonal d, and
d;3, are calculated using the Sine rule based on the known side d:

=SV g g Snlrre)

2

sing, sing,
(5 (I
+ .
PRRLLICAT) IR U
sina, sina,
While side ds is calculated in terms of the previously evaluated sides (11):
d - siny sino sin y d = sind d, (12)

Csing, | sin(a,+8,) © sin(q+f) ° sinf

The coordinates of the unknown points / and 2 are calculated on the basis of
the evaluated elements of the quadrilateral, in terms of the known points 4 and B, using
the equations:

Y, =Y, +d, -sinv, :YA+dl-sin(vf+(p+7)

(13)
X, =X,+d, -cosv} =XA+d1-cos(vf+go+7)
Or
Y, =Y, +d,-sinvy =¥, +d, -sin(v; —y) 14
Xl=XB+d2~cosvll;=XB+d2-cos(vg—l//) (1
As:
Y, =Y, +d, sinv, =Y, +d, -sin(vj‘;1 —y/—é) s

X, =XB+d4~cosv§=XB+d4-cos(v;—z//—5)
Or
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Y,=Y,+d, -sinvi =Y, +d, ‘sin(vf +(0)

(16)

X,=X,+d, cosv} =XA+d3-cos(vff+go)

3. STANDARD DEVIATION OF THE COORDINATES
OF UNKNOWN POINTS

The standard deviation of the coordinates of unknown points / and 2, due to
extensive deriving, will be evaluated only on the basis of equations (13) and (15).

Previously, in these equations, all evaluated values will be expressed only in
terms of measured angles «;, @, f; and S:

Yl=YA+sin[vfj+(B+A)+(180°—al—ﬂl—ﬂz)]-%;‘/l)-d (17)
X, =X, +cos| Vi +(B+A)+(180 —a, - 3 —pg)]-%;l)-d (18)
YZ:YB+sin[v;‘—(B—A)—(ISO"—az—ﬂl—ﬂz)}%;/l)-d (19)
X2=X8+cos[v;;—(B—A)—(180°—a2—ﬂl—/g)]-%;/l).d (20)

Where shifts are introduced:

A = arctan S?n(al +5 +ﬁ2)~s.ina2 'S?nﬁl _S%n(az + 5 +ﬂ2)~s%nal 'S%nﬂz ~tanﬂ] + 5,
sin(a, + B, + B,)-sina, -sin B, +sin(a, + B, + j3,)-sinq, -sin f3, 2
B = ﬂl +182
2

The standard deviation of the coordinates of unknown points / and 2 will be
calculated only on the basis of standard deviations of measured angles «;, a,, f; and
[, while the coordinates of the given points 4 and B, as well as the value of the grid

bearing v4 and the length d will be considered true values.

In accordance with that, the standard deviation of point coordinates will be
calculated using the equations:

oy :\/[_6)’1 J .[_O-“‘ ] +[_8Y1 ] .(_O-”Z ] +(—6YIJ .{_O-ﬂ‘ ] +[—6YI J -(—Uﬂzj @2n
! oa, p" oa, ol op, p" op, p"

oy :\/[_a‘klj .(O-“' J +[—8‘K‘J -[Uazj +{—a ‘j -(Uﬂlj +(—a IJ -[—Gﬂzj (22)
! o, P oa, you op, ol op, P

7 :\/(aY J .[o-al ] +[6Y j '[O-az ] +[aYZJ {O-ﬂ] J +[aYZJ {O-ﬂz ] )
2 oa, p" oa, ol op, p" op, yolt

()
()
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2 2 2 2 2 2 2 2
oo=aa) ) (5] GG () (58] () oo
' Oa, P’ Oa, p" B, P op, o
Where:
0,:0,:0,:;0, -standard deviations of measured angles;

and partial derivatives of functions are:

2—2=a’ -csca {—cotal -sin(vfii +180° — ¢, +A—B)»sin(B—A)—
sin(a, +,82)~sin2B~sin(B—A)‘cos(vf +180° — ¢, +A—B)
C(sec2 B)(C +2Dcos2B)+ D’ (1 +tan” B)
.[sin(Za, —a, - f,)-sin(2a, —a, + )+ 2sin(a, + B, ) +sin(2e, —a, + 28, + B, ) —sin(2a, + a, +2, +,Bz)] .
C(sec” B)(C+2Dcos2B)+ D’ (1+tan’ B)

sin(vf +180° — ¢, +A—B)~sinoz2 -sin 3, -sin 3, -sin(a, + 2B)-sin2B - 2cos(B— A)- tan B
+
C(seczB)(C+ZDCOSZB)+D2 (I-Han2 B)

(25)
N _,, sin 3 -sin f, -sin 2B -sin (e, +2B,)-tan B
oa, C(sec2 B)(C +2Dcos2B)+ D’ (1 + tan? B)
(26)
sin(B—A)‘cos(vf +180° —a, +A—B)—cos(B—A)~sin(vf +180° —a, +A—B)
C(sec’ B)(C+2Dcos2B)+ D’ (1+tan” B)
N _ 4y sin(o, —a,)-sin B, -sin(a, + 4,)-sin’ B
op, C'(sec2 B)(C+2DcosZB)+D2(l+tan2 B)
(27)
sin(B—A)~cos(vf +180° — ¢, +A—B)—cos(B—A)~sin(vf +180° -, +A—B)
C-(sec’ B)(C+2Dcos2B)+ D’ (1+tan’ B)
o _, sin® B[ -2sina, +sin(a, + 24, ) +sin(a, —2a, —23,) - sin (e, +4B) +sin(o, + 22, +4B) |
B, C(sec B)(C +2Dcos2B) + D* (1+tan® B) (28)

sin(B—A)~cos(vff +180° — ¢ +A—B)—cos(B—A)~sin(vf +180° — ¢ +A—B)
C(sec’ B)(C+2Dcos2B)+ D’ (1+tan’ B)

. Can o
%=d'CSC0{| —COS(VfHSO"—a]+A—B)-sin(B—A)»cota,+ sin(a, +f3,)-sin” B-sin (B~ 4) —
o, C(seczB)(C+2Dcos23)+D2 (1+tan'B)

[sin(Zoz1 —a,—B,)-sin(2a, —a, + B, )+ 2sin(a, + B, ) +sin (2a, —a, + 25, + B, ) —sin (2¢, + @, +23, +ﬁ2):'
+ +
C(sec’ B)(C+2Dcos2B)+D*(1+tan’ B)

ZCOS(B—A)-Cos(vf +180° — ¢, +A—B)-sinot2 -sin 4, -sin 8, -sin (e, +2B)-sin 2B - tan B
C(sec’ B)(C+2Dcos2B)+D*(1+tan’ B)
(29)
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X, _ sin(a, +2B)-sin f, -sin B, -sin2B - tan B
da, | C(sec’ B)(C+2Dcos2B)+D*(1+tan’ B)

(30)

cos(B— A)-cos(v} +180° —, + A— B)—sin(B— A)-sin(v; +180°" ~a, + 4— B)
. C(sec2 B)(C+2DCOSZB)+D2 (1+tan2 B)

X _ 44 sin(a, —a,)-sin(a, + £,)-sin 3, -sin’ B

op, C(sec2 IE'>’)(C+2Dc052/.">’)-¢—D2 (1+tan2 B)

cos(B—A)~cos(vf +180° — ¢, +A—B)+sin(B—A)-sin(vf +180° — ¢, +A—B)
C(sec’ B)(C+2Dcos2B)+ D’ (1+tan’ B)

1)

o, _ 4 sin® B[ -2sing, +sin (o, +2,)+sin (e, - 22, ~28,) —sin(a, + 4B) +sin (o, + 22, +4B) | .
B, C(sec” B)(C +2Dcos2B) + D* (1+ tan’ B) (32)
cos(B—A)~cos(vf +180° — ¢, +A—B)—sin(B—A)~sin(vf +180° — ¢, +A—B)

C(sec2 B)(C +2Dcos2B)+ D’ (1 + tan’ B)

o, sin 3, -sin 8, -sin 2B -sin(a, +28)~sin(180“ :v; -a, —2A—2B)~tanB (33)
oa, C(seczB)(C+20c0528)+D'(1+tan2B)
28

o :dcscaz{sin(ISO“ -vi—a, —A—B)-cotot2 -sin(4+B)-

[-sin(a, —2a, - ) - 2sin(a, + B,) +sin(a, - 2a, + B) +sin(e, - 2a, - B~ 2,) +sin(e, +2a, + B, +213,) ]
C(sec’ B)(C +2Dcos2B)+ D*(1+ tan’ B)

sin(a, +3,)-sin’ B-cos(180° —v; -, - A~ B)-sin( 4+ B)
C(sec’ B)(C+2Dcos2B)+ D*(1+tan’ B)

sin(180° -v)—a, —A—B)'2COS(A+B)‘SiH0!l -sin B, -sin f, -sin(, +2B)-sin2B - tan B
C(seczB)(C+2DcosZB)+DZ(1+tanzB)

(34)
o, _, [-2+2cos(2a, ) +cos(23,)+cos(2a, + 213, ) —cos(2a, —2at, +2/3, ) —cos (2a, +2/3,) —cos 4B +
B 2 C(sec® B)(C+2Dcos2B)+ D (1+1an® B) | (35)
+cos(2a, +4B)+cos(2a, +4B)—cos(2a, +2a, +4B) |-csc’ a, -sin’ B-sin(180° vy —a, —2A—ZB)
2[C(sec2 B)(C+2Dcos2B)+D2 (1+tan2 B)}
., sin(a, -, ) -sin(B,) - sin(e, + B,)-sin’ B-sin(180° —v)—a,—24- 23) (36)
B, C(sec’ B)(C +2Dcos2B)+ D’ (1+tan’ B)

o, _ o sin 3, -sin B, -sin2B -sin(a, +2B)-tan B- cos(180° —v) —a,-24- ZB) (37)
da, C(sec’ B)(C+2Dcos2B)+ D*(1+tan’ B)
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o0X,

60(;

[-sin(a, —2a, - ) - 2sin(a, + B,) +sin(a, - 2a, + B) +sin(e, - 2a, — B, - 23,) +sin(e, +2a, + B, +213,) |
C(sec’ B)(C+2Dcos2B)+ D*(1+ tan’ B)

=dcsca, {—005(180“ -vi—a, —A—B)-cotot2 -sin(4+B)-

sin(g +,Bl)-sinzB-sin(l80° —v)—a,—4 —B)‘sin(A+B)
C(sec2 B)(C +2Dcos2B)+D? (1 +tan® B)

+

2003(180° -v)-a, 7AfB)-cos(A+B)-sinal -sin B, -sin 3, -sin 2B -sin(¢, +23)-tanB}

" C(sec’ B)(C+2Dcos2B) + D*(1+tan’ B)

(38)
ax, J [27200s(20{2)70(>s(2,81)7cos(20:1 +2p,)+cos(2a, —2a, +28,) +cos(2a, + 2 3,) + cos4B —
B, 2[C(sec® B)(C+2Dcos2B)+ D*(1+tan® B) | (39)
—cos(2a, +4B) - cos(2a, + 4B) +cos(2a, + 2a, + 4B) |-csc’ a, -sin” B-cos(180" —v; —a, —2A—2B)

2[ C(sec’ B)(C+2Dcos2B)+ D*(1+tan” B) |

0X, " sin(a,7(12)-sin(ﬁ1)-sin(al+ﬁl)-sinzB-cos(180°7vg70!272A72B) (40)
B, C(sec* B)(C +2Dcos2B)+ D*(1+tan’ B)

Where shifts are:
C=sina, -sin B, -sin(a, + B, + f5,)

D =sing, -sin B, -sin(a, + S, + 53,)
3.1. Example
An example of the analysis pertaining to the standard deviation of unknown

points has been performed on the geodetic quadrilateral in the shape of a regular square
whose elements are shown in Figure 2.

Ye=150.00m
B ey Xo=186.60m

d=100.00m

AL
Y A=100.00m
Xa=100.00m

d=100.00m

d=100.00m

Figure 2 - Geodetic quadrilateral in the shape of a regular square
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The coordinates of unknown points / and 2 have been evaluated using

equations (13) and

(15):

Y, =186.60m; X, =50.00m

Y, =236.60m; X, =136.60m
The values of the partial derivatives are:

%:HOOm; ﬁ:—136.603m; %:0; %:+136.603m

aal az 1 aﬁZ

X _ 173206m; 2= 36.603m; Koo, P 136.603m
Ol] az 1 a182

o1, =-36.603m; or, =-100m; o =+36,603m; L_ 0
, a, aﬁl 2

o o 1136.603m; X2~ _173206m; 22— _136.603m; X2 g
a, a, 1 2

Based on these values and assuming various standard deviations of the
measured angles using the equations (21-24), the standard deviations of the coordinates

of the points / and 2 have been evaluated, where:

Y 2,
0,=40y +to,"; 0,

_ [ 2
=4\0y, tOy

(41)

Table 1- Standard deviation of the coordinates of unknown points

Cfa1 =O'0!2 =O'[;I ZUﬂZ

1" 2" 3" 5" 10" | 20" | 30" | 60"
oy [mm]| 1.1 2.1 32 53 | 105 | 21.1 | 316 | 633
Oy, [mm] | 09 1.8 2.6 4.4 88 | 175 | 263 | 526
o, [mm]| 14 2.7 4.1 69 | 137 | 274 | 411 | 823
oy, [mm]| 05 1.1 1.6 2.7 55 | 109 | 164 | 328
oy, [mm]| 13 2.5 3.8 6.3 126 | 252 | 37.7 | 755
o, [mm]| 14 2.7 4.1 69 | 137 | 274 | 41.1 | 823

As Table 1 shows, considering the regular shape of the geodetic quadrilateral,
the standard deviations of the unknown points are mutually equal, and their value
increases proportional to the decrease in the accuracy of the angle measurements in the

quadrilateral.

4. CONCLUSION

The standard deviation of the coordinates of unknown points which is
determined using Hansen's method is not presented in scientific literature. One reason
for this, among others, must lie in the fact that it involves extensive and complex
calculations, primarily of the coefficients which represent partial derivatives with
respect to variable or measured quantities. Although contemporary measuring
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techniques enable the determining of the coordinates of any point providing there is
mutual visibility, there is a whole range of different situations on the terrain which
require the application of Hansen’s method. This is, above all, the case when solving
specific engineering problems in regard to mines with underground exploitation.

For this reason, it is vital to perceive the optimal shape of the geodetic
quadrilateral, having in mind that errors in point coordinates, besides being influenced
by errors in the measured angles, are also impacted by the shape of the quadrilateral.
This paper serves as the first step in the analysis of the impact of the geodetic
quadrilateral shape on the standard deviation of the coordinates of the unknown points
where standard deviation equations have been derived.
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