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Abstract: This paper presents using GDAL utilities and GRASS GIS for 

topographic analysis of the raster grids based on GEBCO DEM as NetCDF file at 

15 arc-second intervals. The focus study area encompasses the area around 

Okinawa Trough, Ryukyu trench-arc system, southern Japan, East China Sea and 

the Philippine Sea, west Pacific Ocean. Several GDAL utilities were applied for 

data processing: gdaldem, gdalwarp, gdalinfo, gdal_translate. The data were 

imported to GRASS GIS via r.in.gdal. Data visualization highlighted high 

resolution and accuracy of GEBCO grid, enabling topographic modelling at the 

advanced level. The algorithm of DEM processing, implemented in GDAL utility 

gdaldem, was used for generating multi-purpose topographic models: aspect, 

hillshade, roughness and topographic indices, such as Topographic Position Index 

(TPI), Terrain Ruggedness Index (TRI). Thematic maps (topography, geoid, 

marine free-air gravity) were visualized using GRASS GIS modules for raster 

(d.rast, r.colors, r.contour) and vector (d.vect, v.in.region, d.legend) data 

processing. The results demonstrated smoother bathymetry in the East China Sea 

and rugged relief in the Philippine Sea which corresponds to their different 

geological and geophysical settings. The presented methodology of the 

topographic analysis based on DEM demonstrated technical aspects of GDAL and 

GRASS as scripting approach of advanced cartography. 
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1 INTRODUCTION 

This paper presents application of scripting cartographic methods for topographic data 

analysis and modelling by GDAL, Geospatial Data Abstraction Library (GDAL/OGR 

contributors, 2020) and open-source GRASS GIS (Neteler, 2001; Neteler and Mitasova, 

2008). Automated data processing in geological mapping is presented in the existing 

literature (Gruber et al., 2017; Maggiori et al., 2017; Krčmar et al., 2020; Bongiovanni 

et al., 2021; Thiele et al., 2021; Arriagada et al., 2021; Balogun et al., 2021). Using 

scripts and console based methods in cartography presented a new step in further 

developing of cartographic methods and solutions for machine learning and 

automatization in GIS. Data processing by GDAL followed by geo-visualization in 
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GRASS GIS, presented in this paper, aimed at topographic modelling for regional 

physical geographical analysis in the area of the Okinawa Trough and Ryukyu trench-

arc system. Such methodology has not been qualitatively explored in the existing papers, 

despite some thematic overlaps (Ohta et al., 2013; Minami and Ohara, 2020; Arai et al., 

2016a; Minami et al., 2020; Li et al., 20201; Xu and Chen, 2021).  

 

 

Figure 1 GRASS GIS console (left) and ‘gdalinfo’ GDAL utility (right). Source: author. 

 

The aim of this paper is to perform a topographic analysis of the selected study area by 

applying various types of topographic modelling: Topographic Index Ruggedness (TRI), 

Topographic Position Index (TPI), roughness, hillshade, slope orientation aspect, as well 

as visualizing geoid and gravimetric grids using GDAL utilities (gdaldem, 

gdal_translate, gdalwarp, gdal_contour) and GRASS modules (Figure 1).  

The study area includes region of southern Japan: Okinawa Trough and Ryukyu trench-

arc system, located between the East China Sea (ECS) and the Philippine Sea, Pacific 

Ocean (Ludwig and Murauchi, 1973), 120°–134°Е, 20°–33°N. The area is notable for 

the complex topography and variability in the depths: the ECS is shallower comparing 

to the Philippine Sea. The Okinawa Trough and Ryukyu trench-arc system, stretching 

parallel, are notable for the rugged bathymetry and local spatial variations. Various 

factors affect submarine topography, which is reflected by complex structure and local 

variations in the marine environment (Lemenkova, 2019) highlighting correlation in a 

complexity of geophysical and geological factors: dynamics of the plate tectonics, 



Okinawa trough geophysical and topographic modeling… 89 
 

magmatism (Shinjo and Kato, 2000; Kiminami et al., 2017; Guo et al., 2017), seismicity 

(Klingelhoefer et al., 2009; Konstantinou et al., 2013), volcanism and sedimentation (Lee 

et al., 2004; Huh et al., 2006; Minami and Ohara 2016; Yang et al., 2021), subduction 

channel thickness, landforms (Oiwane et al., 2011; Lemenkova 2020a, 2020b), climatic 

factors (Hayakawa et al., 2015). 

Topography in the region of Okinawa Trough and Ryukyu Trench is uneven due to the 

distribution of the three groups of islands on the forearc basement stretching over the 

Ryukyu arc (Kizaki, 1986) with Kerama Fault separating southern and central groups of 

islands. The seafloor of the ECS is well levelled with the depth ranges mostly at 60÷90 

m rarely increasing up to 100÷120 m at the outer edge. In the southeastern part of the 

sea, narrow Okinawa Trough basin extends along the Ryukyu Arc, with depths 

increasing southwards (800÷2900) m. The Ryukyu Arc stretching parallel to the Ryukyu 

Trench and Okinawa Trough (Figure 2) is an arch-shaped gently curved 1000 km long 

chain of mountain structure. The surface of the Cenozoic structures of the Ryukyu Arc 

stepwise descends to the seafloor. Geomorphic variations differ regionally: gentler in 

central and south (40÷50°) at 7 km depth and steeper (70°) at >7 km in the north (Long 

and Hilst 2006).  

 

 

Figure 2 Topographic map of the Okinawa Trough and Ryukyu trench-arc system, based 

on GEBCO grid (right). Running commands in a shell terminal of GRASS GIS (left). 

Source: author. 

Seismic investigations of the Okinawa area shown that sediment thickness is ca. 2-3 km 

on the oceanic plate, crust thickness is 5÷6 km. Upper mantle material underlying the 

oceanic plate has low seismic velocities, due to the geochemical processes of the mantle 

peridotites (Klingelhoefer et al., 2012). Trenches located far away in the ocean have 
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dominating ‘pelagic’ sedimentation type with pyroclastic material coming from the 

neighbour island arc (Yap, Palau, Mariana, Tonga), while Ryukyu Trench and Okinawa 

Trough located near the shelf areas (ECS) and large islands – ‘terrigenous’ type with 

evident sediment filling. In contrast to the ECS, the Philippine Sea, located southwards 

from the trench, is marked by a small amount of sediments and deeper bathymetry 

(Figure 2). 

Topography of the seafloor is affected by the rates of the sedimentation, strength of ocean 

currents and lithological composition of the seafloor rocks (Arai et al., 2016b; Maunde 

et al., 2021). The sedimentation in the Okinawa region is as follows: in its eastern part, 

sediment thickness is 0.3-0.5 km, increasing to 1 km in the northern part, decreases to 

0.1-0.2 km in the western part and increases near Taiwan and Ryukyu (Litvin, 1987).  

 

 

Figure 3 Marine free-air gravity grid (right). GDAL commands in GRASS GIS: ‘gdalwarp’ 

for reprojecting grid, ‘r.in/gdal’ for data import and visualizing metadata by ‘r.info’ (left). 

Source: author 

Important factor affecting the topography in the Okinawa region includes geophysical 

settings. Thus, regional differences in the magnetic anomalies in the ECS and the 

Philippine seas near Okinawa Trough and Ryukyu trench-arc system are caused by 

regional variations in the geochemistry and magnetism of the underlying seafloor rocks 

and Earth's magnetic field. Linear magnetic anomalies near the Ryukyu Arc are caused 

by the Antiklinorium of the alpine arc structures and Precambrian anticlinal structures 

on the shelf of the ECS. Philippine Sea is notable for a typical oceanic linear magnetic 

field, consistent with the oceanic crust. Regional seismic differences can be illustrated 

by waves velocities: granite layer on the shelf 5.8–6.3 km/s, under the Ryukyu Arc – 

5.0–6.2 km/s, in the basaltic layer – 6.7–7.2 km/s (Litvin 1987). 
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2 METHODOLOGY 

GDAL utilities and GRASS GIS commands were applied to the study area for 

topographic modelling. The methodology includes following steps. First, the 

topographic raster NetCDF file (rt_relief_UTM52.nc) initially in WGS84 geographic 

reference coordinate system was warped to UTM proj Zone 56 by GDAL using PROJ 

library via ‘gdalwarp’ utility. The file was then imported to the GRASS GIS environment 

via (Figure 1, left). The metadata of the output file were checked up by GDAL ‘gdalinfo’ 

utility (Figure 1, right): longitude of central and prime meridian, spatial reference details, 

datum, projection. The same procedure was repeated for other raster grids: geoid 

(EGM96) and marine free-air gravity which shows difference between the observed 

acceleration of gravity on the Earth's surface and corresponding modelled value 

predicted from the Earth's gravity field.  

 

 

Figure 4 Geoid model for Okinawa region (right). Shell script in Xcode containing GDAL 

(utilities: ‘gdal_translate’, ‘gdalinfo’, ‘gdalwarp’) and GRASS GIS commands (left). 

Source: author. 

The second step consisted in visualization of topography (Figure 2), gravity (Figure 3) 

and geoid models (Figure 4, right) on the Okinawa Trough area using scripts containing 

sequence of GRASS GIS commands (Figure 4, left).  The conceptual approach of 

GRASS GIS consists in scripting cartographic modelling which means that the maps is 

being built using a sequence of modules used for each element of map and/or algorithms 

of data processing. For example, plotting contour lines for gravity map was perform by 

code using ‘r.contour’ module: ‘r.contour rt_grav_UTM52 out=GravRT_UTM52 

step=30’, where step=30 assigns an interval for isolines and ‘out=GravRT_UTM5’ flag 

stands for defining output file.  
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The display of the modelled contour lines was done by GRASS module ‘d.vect’: ‘d.vect 

GravRT_UTM52 color='100:93:134' width=0’. Plotting grid of the cartographic lines 

was done using ‘d.grid’ module by following code with self-explaining commands: 

‘d.grid size=3 color=yellow border_color=yellow width=0.1 fontsize=8 bgcolor=white 

text_color=red’. Likewise, other cartographic elements were added stepwise using 

GRASS GIS special modules: 'r.colors' to set up colour palette, 'g.region' to select display 

coordinate extent of the study area, 'd.rast' to display grids (NetCDF and GeoTIFF), 

'd.legend' for plotting legend, 'd.title' for plotting title of the map, 'd.text' for adding text 

annotations, 'v.in.region' module was used to plot a border box. The resulting maps 

showing topographic and geophysical settings of the study area are shown on Figure 2, 

3 and 4.  

The next step included topographic modelling using GDAL utility ‘gdaldem’, which was 

used for plotting a series of maps for topographic analysis: Figures 5–7 using sequence 

of five GDAL commands in a script (Figure 5, left). The mathematical algorithms of the 

modelling are based on the existing GDAL technical documentation (GDAL/OGR 

contributors, 2020). The aspect map  (Figure 5, right) was generated from the DEM in 

NetCDF format (rt_relief_UTM52.nc) using gdaldem utility as follows: 'gdaldem aspect 

-of GTiff rt_relief_UTM52.nc rt_aspect.tif -trigonometric -zero_for_flat -alg 

ZevenbergenThorne'. The input raster was geographically North-oriented (UTM Zone 

56). The output map (rt_aspect.tif) is stored as a 32-bit float GeoTIFF raster with 

orientation values 0°÷360° indicating azimuth that slopes are facing. Because the 

trigonometric angle was used instead of azimuth, the orientations were set up as follows: 

0° is an East facing slope, 90° a North facing slope, 180° is a West facing slope and 270° 

is South-facing slope, respectively. The flag ‘zero_for_flat ’ assigns ‘zero’ for absolutely 

flat areas (slope=0°). 

 

Figure 5 GDAL script: ‘gdaldem’ utility for topographic analysis (left). Aspect map 

showing compass orientation (0°– 360°) of the slopes (right). Map: GRASS GIS. Source: 

author 
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The hillshade visualizing the terrain (Figure 6, left) was generated by ‘gdaldem’ utility 

using following code: ‘gdaldem hillshade -of GTiff rt_relief_UTM52.nc rt_hillshade.tif 

-az 315 -alt 45 -alg ZevenbergenThorne -b 1 -z 1 -combined’. Here the azimuth was 

defined as 315° and altitude of the sun (artificial light source). The Zevenbergen and 

Thorne formula was applied, instead of Horn’s formula (-alg ZevenbergenThorne'), to 

compute aspect, since Zevenbergen and Thorne visualizes better smooth terrains. The ‘-

z’ flag was used to set up vertical exaggeration as one, to avoid multiply the elevations 

(natural view). The ‘-combined’ flag was applied to combine slope and oblique shading. 

The output is stored as an 8-bit GeoTIFF (rt_hillshade.tif) with a shaded relief effect 

(Figure 6, left). 

3 RESULTS AND DISCUSSION 

Roughness of topography (Figure 6, right) shows a key geomorphometric variable 

widely used in geosciences (Hobson 1972; Frankel and Dolan, 2007; Grohmann et al., 

2009). Topographic roughness indicates variability of elevation values, enabling to 

identify landforms and geomorphic processes. The roughness was plotted using 

embedded algorithms of GDAL using variability elevation DEM values from the initial 

NetCDF grid. The algorithm consists in computing the area ratio through assessment of 

similarities between the surface and flat area of square cells. Thus, roughness expresses 

standard deviation of the elevation values from a best-fit plane. Roughness was 

computed by following GDAL command: ‘gdaldem roughness rt_relief_UTM52.nc 

rt_roughness.tif’. 

 

Figure 6 Hillshade model, azimuth 315° (left). Topographic surface roughness, from 

smooth to rough (right). Mapping: GRASS GIS. Source: author. 

The Terrain Ruggedness Index (TRI) was defined by ‘gdaldem’ utility as the mean 

difference between a central pixel and its surrounding cells (Figure 7, left). The TRI was 

used to quantify topographic heterogeneity of the Okinawa Trough region. The 

calculating of the TRI was done by GDAL for each point on the grid: the algorithm 
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computed average values across all grid cells as an elevation terrain ruggedness of the 

surface area. The computation was done using code: ‘gdaldem TRI -compute_edges -of 

GTiff rt_relief_UTM52.nc rt_TRI.tif’. Here the ‘-compute_edges’ flag was used to 

compute cells at raster edges and 'near-nodata' values. The output map is presented on 

Figure 7 (left). As can be seen, the most rugged areas (TRI 500÷725) are coloured dark 

brown and correspond to the mountainous areas and deep-sea Ryukyu Trench. The TRI 

of 275÷325, yellow-coloured areas, correspond to the moderate ruggedness, and the 

lowest values (TRI 0÷50) are notable for the near-flat well-levelled areas of the seafloor 

(well seen for the ECS seafloor, while more rugged for the Philippine Sea seafloor with 

TRI 50÷275).  

The Topographic Position Index (TPI) is computed using DEM elevation values. The 

concept is based on the comparison of the elevation of each cell to a mean elevation of 

a neighbour cell. The TPI was generated using following GRASS GIS code: ‘gdaldem 

TPI -compute_edges -of GTiff rt_relief_UTM52.nc rt_TPI.tif’. The output map shows 

TPI for the Okinawa area (Figure 7, right). 

 

Figure 7 Terrain Ruggedness Index (left). Topographic Position Index (right). Source: 

author. 

Positive TPI values (Figure 7, right, green to brown colours) show locations higher than 

the average of the nearby area. Vice versa, negative TPI values (Figure 7, right, blue to 

black colours) represent locations lower than the surroundings. The TPI values near zero 

are flat areas (the slope is almost zero) or areas of constant slope. As can be seen, the 

zero TPI values (light blue colours) are characteristics for the most of the seafloor, 

negative TPI – for the deep-sea trenches and troughs (Ryukyu Trench, Okinawa Trough) 

and positive TPI are noticeable for the terrestrial areas. High TPIs can be noticed on the 

Taiwan Island (brown colours) and around the Ryukyu Arc.  
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4 CONCLUSIONS 

GDAL and GRASS GIS scripting techniques in cartography demonstrated in this 

research presents a new step in cartographic development with an accent on machine 

learning and application of advanced scripting and coding in GIS. Applications of GIS 

in geoscience are diverse and well known: ArcGIS and QGIS (Klaučo et al., 2013, 2017; 

Jamieson and Stewart, 2021; Tsunogai et al., 2002; Ruan et al., 2020; Fang et al., 2020; 

Subarno et al., 2016), GMT. However, the use of big data and advanced programming 

tools in geoscience (Lemenkov and Lemenkova, 2021) requires use of console-based 

data processing rather than GUI.  

Using advanced methods for topographic modelling and analysis is important method in 

geographic studies. Geographical processes acting on landscapes are highly correlated 

with topographic variables, such as surface roughness, hilltop, slope degree and 

steepness, aspect compass orientation, valley bottom, seafloor relief of the submarine 

landscapes, ridges, plains, upper or lower topographic slope, etc. Topographic 

derivatives (slope angle, curvature, aspect) are computed for landslide analysis.  

Applying various approaches for calculations of roughness, TPI, TRI, visualizing hill 

shade and aspect is important features of GIS. GDAL and GRASS GIS techniques 

provide methods for raster data processing at the advanced level. This paper contributed 

to the technical methods in cartography with particular application to the ocean studies. 
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